BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27017408)

  • 1. Nitric oxide and reactive oxygen species: Clues to target oxidative damage repair defective breast cancers.
    Somasundaram V; Nadhan R; K Hemalatha S; Kumar Sengodan S; Srinivas P
    Crit Rev Oncol Hematol; 2016 May; 101():184-92. PubMed ID: 27017408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A redox signaling perspective.
    Monteiro HP; Rodrigues EG; Amorim Reis AKC; Longo LS; Ogata FT; Moretti AIS; da Costa PE; Teodoro ACS; Toledo MS; Stern A
    Nitric Oxide; 2019 Aug; 89():1-13. PubMed ID: 31009708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide plays a dual role in the oxidative injury of cultured rat microglia but not astroglia.
    Wang JY; Lee CT; Wang JY
    Neuroscience; 2014 Dec; 281():164-77. PubMed ID: 25280787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitroxide antioxidant as a potential strategy to attenuate the oxidative/nitrosative stress induced by hydrogen peroxide plus nitric oxide in cultured neurons.
    Lee CT; Yu LE; Wang JY
    Nitric Oxide; 2016 Apr; 54():38-50. PubMed ID: 26891889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of xanthine oxidase activity with oxidative and inflammatory renal damage in silver catfish experimentally infected with Streptococcus agalactiae: Interplay with reactive oxygen species and nitric oxide.
    Souza CF; Baldissera MD; Moreira KLS; da Rocha MIUM; da Veiga ML; Santos RCV; Baldisserotto B
    Microb Pathog; 2017 Oct; 111():1-5. PubMed ID: 28804017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Beta-glucan as a natural anticancer agent].
    Jurczyńska E; Saczko J; Kulbacka J; Kawa-Rygielska J; Błazewicz J
    Pol Merkur Lekarski; 2012 Oct; 33(196):217-20. PubMed ID: 23272610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species in redox cancer therapy.
    Tong L; Chuang CC; Wu S; Zuo L
    Cancer Lett; 2015 Oct; 367(1):18-25. PubMed ID: 26187782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial reactive oxygen species and nitric oxide-mediated cancer cell apoptosis in 2-butylamino-2-demethoxyhypocrellin B photodynamic treatment.
    Lu Z; Tao Y; Zhou Z; Zhang J; Li C; Ou L; Zhao B
    Free Radic Biol Med; 2006 Nov; 41(10):1590-605. PubMed ID: 17045927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different kinds of reactive oxygen and nitrogen species were detected in colon and breast tumors.
    Haklar G; Sayin-Ozveri E; Yüksel M; Aktan AO; Yalçin AS
    Cancer Lett; 2001 Apr; 165(2):219-24. PubMed ID: 11275372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silibinin induces the generation of nitric oxide in human breast cancer MCF-7 cells.
    Wang HJ; Wei XF; Jiang YY; Huang H; Yang Y; Fan SM; Zang LH; Tashiro S; Onodera S; Ikejima T
    Free Radic Res; 2010 May; 44(5):577-84. PubMed ID: 20370556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reactive oxygen species activation mechanism contributes to JS-K-induced apoptosis in human bladder cancer cells.
    Qiu M; Chen L; Tan G; Ke L; Zhang S; Chen H; Liu J
    Sci Rep; 2015 Oct; 5():15104. PubMed ID: 26458509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of a feed forward pro-apoptotic mechanistic loop by nitric oxide in a human breast cancer model.
    Sen S; Kawahara B; Fukuto J; Chaudhuri G
    PLoS One; 2013; 8(8):e70593. PubMed ID: 23950968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer.
    Brown NS; Bicknell R
    Breast Cancer Res; 2001; 3(5):323-7. PubMed ID: 11597322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reactive nitrogen and oxygen species metabolism in rat heart mitochondria upon administration of NO donor in vivo].
    Akopova OV; Korkach IuP; Kotsiuruba AV; Kolchyns'ka LI; Sagach VF
    Fiziol Zh (1994); 2012; 58(2):3-15. PubMed ID: 22873047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proanthocyanidin protects against cisplatin-induced oxidative liver damage through inhibition of inflammation and NF-κβ/TLR-4 pathway.
    El-Shitany NA; Eid B
    Environ Toxicol; 2017 Jul; 32(7):1952-1963. PubMed ID: 28371137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective mode of action of plumbagin through BRCA1 deficient breast cancer stem cells.
    Somasundaram V; Hemalatha SK; Pal K; Sinha S; Nair AS; Mukhopadhyay D; Srinivas P
    BMC Cancer; 2016 May; 16():336. PubMed ID: 27229859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Oxidative Stress Modulators in Breast Cancer.
    Gurer-Orhan H; Ince E; Konyar D; Saso L; Suzen S
    Curr Med Chem; 2018; 25(33):4084-4101. PubMed ID: 28699501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel anticancer hybrids from diazen-1-ium-1,2-diolate nitric oxide donor and ROS inducer plumbagin: Design, synthesis and biological evaluations.
    Bao N; Ou J; Li N; Zou P; Sun J; Chen L
    Eur J Med Chem; 2018 Jun; 154():1-8. PubMed ID: 29772386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species-mediated synergistic and preferential induction of cell death and reduction of clonogenic resistance in breast cancer cells by combined cisplatin and FK228.
    Pluchino LA; Choudhary S; Wang HC
    Cancer Lett; 2016 Oct; 381(1):124-32. PubMed ID: 27477899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of oxidative stress on breast cancer development and therapy.
    Hecht F; Pessoa CF; Gentile LB; Rosenthal D; Carvalho DP; Fortunato RS
    Tumour Biol; 2016 Apr; 37(4):4281-91. PubMed ID: 26815507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.