These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27017897)

  • 21. Impact of Oxysterols in Age-Related Disorders and Strategies to Alleviate Adverse Effects.
    Ghosh S; Ghzaiel I; Vejux A; Meaney S; Nag S; Lizard G; Tripathi G; Naez F; Paul S
    Adv Exp Med Biol; 2024; 1440():163-191. PubMed ID: 38036880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exposure to atheroma-relevant 7-oxysterols causes proteomic alterations in cell death, cellular longevity, and lipid metabolism in THP-1 macrophages.
    Ward LJ; Ljunggren SA; Karlsson H; Li W; Yuan XM
    PLoS One; 2017; 12(3):e0174475. PubMed ID: 28350877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling.
    Rubio N; Verrax J; Dewaele M; Verfaillie T; Johansen T; Piette J; Agostinis P
    Free Radic Biol Med; 2014 Feb; 67():292-303. PubMed ID: 24269898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of cell signaling pathways by oxysterols in age-related human diseases.
    Leonarduzzi G; Gargiulo S; Gamba P; Testa G; Sottero B; Rossin D; Staurenghi E; Poli G
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S5. PubMed ID: 26461396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Involvement of oxysterols in age-related diseases and ageing processes.
    Zarrouk A; Vejux A; Mackrill J; O'Callaghan Y; Hammami M; O'Brien N; Lizard G
    Ageing Res Rev; 2014 Nov; 18():148-62. PubMed ID: 25305550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxysterols in intestinal immunity and inflammation.
    Willinger T
    J Intern Med; 2019 Apr; 285(4):367-380. PubMed ID: 30478861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Omics analysis of oxysterols to better understand their pathophysiological role.
    Sottero B; Rossin D; Staurenghi E; Gamba P; Poli G; Testa G
    Free Radic Biol Med; 2019 Nov; 144():55-71. PubMed ID: 31141713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patulin triggers NRF2-mediated survival mechanisms in kidney cells.
    Pillay Y; Phulukdaree A; Nagiah S; Chuturgoon AA
    Toxicon; 2015 Jun; 99():1-5. PubMed ID: 25772858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence of cell damage induced by major components of a diet-compatible mixture of oxysterols in human colon cancer CaCo-2 cell line.
    Biasi F; Chiarpotto E; Sottero B; Maina M; Mascia C; Guina T; Gamba P; Gargiulo S; Testa G; Leonarduzzi G; Poli G
    Biochimie; 2013 Mar; 95(3):632-40. PubMed ID: 23092829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Importance of genetic background of oxysterol signaling in cancer.
    Holy P; Kloudova A; Soucek P
    Biochimie; 2018 Oct; 153():109-138. PubMed ID: 29746893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxysterols as a biomarker in diseases.
    Zmysłowski A; Szterk A
    Clin Chim Acta; 2019 Apr; 491():103-113. PubMed ID: 30685361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of oxysterols in vascular ageing.
    Gargiulo S; Gamba P; Testa G; Leonarduzzi G; Poli G
    J Physiol; 2016 Apr; 594(8):2095-113. PubMed ID: 26648329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implication of oxysterols in chronic inflammatory human diseases.
    Testa G; Rossin D; Poli G; Biasi F; Leonarduzzi G
    Biochimie; 2018 Oct; 153():220-231. PubMed ID: 29894701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions of oxysterols with membranes and proteins.
    Olkkonen VM; Hynynen R
    Mol Aspects Med; 2009 Jun; 30(3):123-33. PubMed ID: 19248802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxysterols in heart failure.
    Lukyanenko V; Lukyanenko Y
    Future Cardiol; 2009 Jul; 5(4):343-54. PubMed ID: 19656059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macrophage oxysterols and their binding proteins: roles in atherosclerosis.
    Olkkonen VM
    Curr Opin Lipidol; 2012 Oct; 23(5):462-70. PubMed ID: 22814702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2.
    Olayanju A; Copple IM; Bryan HK; Edge GT; Sison RL; Wong MW; Lai ZQ; Lin ZX; Dunn K; Sanderson CM; Alghanem AF; Cross MJ; Ellis EC; Ingelman-Sundberg M; Malik HZ; Kitteringham NR; Goldring CE; Park BK
    Free Radic Biol Med; 2015 Jan; 78():202-12. PubMed ID: 25445704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxysterols: Sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis.
    Brown AJ; Jessup W
    Mol Aspects Med; 2009 Jun; 30(3):111-22. PubMed ID: 19248801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LAPTM4B is associated with poor prognosis in NSCLC and promotes the NRF2-mediated stress response pathway in lung cancer cells.
    Maki Y; Fujimoto J; Lang W; Xu L; Behrens C; Wistuba II; Kadara H
    Sci Rep; 2015 Sep; 5():13846. PubMed ID: 26343532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases.
    Lordan S; Mackrill JJ; O'Brien NM
    J Nutr Biochem; 2009 May; 20(5):321-36. PubMed ID: 19345313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.