BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27018332)

  • 1. Studies on the in vitro and in vivo degradation behavior of amino acid derivative-based organogels.
    Li Z; Cao J; Hu B; Li H; Liu H; Han F; Liu Z; Tong C; Li S
    Drug Dev Ind Pharm; 2016 Nov; 42(11):1732-41. PubMed ID: 27018332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled drug delivery system based on low-molecular-weight bis-amide organogelator: synthesis, properties and in vivo evaluation.
    Li Z; Cao J; Li H; Liu H; Han F; Liu Z; Tong C; Li S
    Drug Deliv; 2016 Oct; 23(8):3168-3178. PubMed ID: 26912188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of glutamate-based organogels for biodegradable implants: In vitro study and in vivo observation.
    Hu B; Wang W; Wang Y; Yang Y; Xu L; Li S
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():80-90. PubMed ID: 29025677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organogels based on amino acid derivatives and their optimization for drug release using response surface methodology.
    Hu B; Yan H; Sun Y; Chen X; Sun Y; Li S; Jing Y; Li H
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):266-275. PubMed ID: 31851842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic modifications of amino acid-based organogelators for the investigation of structure-property correlations in drug delivery system.
    Hu B; Sun W; Li H; Sui H; Li S
    Int J Pharm; 2018 Aug; 547(1-2):637-647. PubMed ID: 29933060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents.
    Esposito CL; Tardif V; Sarrazin M; Kirilov P; Roullin VG
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110999. PubMed ID: 32993979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined effect of shearing and cooling rate on the rheology of organogels developed by selected gelators.
    De la Peña-Gil A; Álvarez-Mitre FM; González-Chávez MM; Charó-Alonso MA; Toro-Vazquez JF
    Food Res Int; 2017 Mar; 93():52-65. PubMed ID: 28290280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parenteral thermo-sensitive organogel for schizophrenia therapy, in vitro and in vivo evaluation.
    Wang D; Zhao J; Liu X; Sun F; Zhou Y; Teng L; Li Y
    Eur J Pharm Sci; 2014 Aug; 60():40-8. PubMed ID: 24815944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.
    Jhawat V; Gupta S; Saini V
    Drug Deliv; 2016 Nov; 23(9):3573-3581. PubMed ID: 27494650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds.
    Iwanaga K; Sumizawa T; Miyazaki M; Kakemi M
    Int J Pharm; 2010 Mar; 388(1-2):123-8. PubMed ID: 20045041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoengineering of a biocompatible organogel by thermal processing.
    Li JL; Wang RY; Liu XY; Pan HH
    J Phys Chem B; 2009 Apr; 113(15):5011-5. PubMed ID: 19309102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug.
    Pereira Camelo SR; Franceschi S; Perez E; Girod Fullana S; Ré MI
    Drug Dev Ind Pharm; 2016; 42(6):985-97. PubMed ID: 26548427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Solvent Parameters for Predicting Organogel Formation.
    Hu B; Sun W; Yang B; Li H; Zhou L; Li S
    AAPS PharmSciTech; 2018 Jul; 19(5):2288-2300. PubMed ID: 29845502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel chiral separation material: polymerized organogel formed by chiral gelators for the separation of D- and L-phenylalanine.
    Fu X; Yang Y; Wang N; Wang H; Yang Y
    J Mol Recognit; 2007; 20(4):238-44. PubMed ID: 17624913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipase is essential for the study of in vitro release kinetics from organogels.
    Dufresne MH; Marouf E; Kränzlin Y; Gauthier MA; Leroux JC
    Mol Pharm; 2012 Jun; 9(6):1803-11. PubMed ID: 22510056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of organogel components on in vitro nasal delivery of propranolol hydrochloride.
    Pisal S; Shelke V; Mahadik K; Kadam S
    AAPS PharmSciTech; 2004 Sep; 5(4):e63. PubMed ID: 15760060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved initial burst of estradiol organogel as long-term in situ drug delivery implant: formulation, in vitro and in vivo characterization.
    Yang Y; Xu L; Gao Y; Wang Q; Che X; Li S
    Drug Dev Ind Pharm; 2012 May; 38(5):550-6. PubMed ID: 22420863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects.
    Frkanec L; Zinić M
    Chem Commun (Camb); 2010 Jan; 46(4):522-37. PubMed ID: 20062853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of organogel with tea polyphenols complex for enhancing the antioxidation properties of edible oil.
    Shi R; Zhang Q; Vriesekoop F; Yuan Q; Liang H
    J Agric Food Chem; 2014 Aug; 62(33):8379-84. PubMed ID: 25089366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages.
    Reddy SM; Shanmugam G; Duraipandy N; Kiran MS; Mandal AB
    Soft Matter; 2015 Nov; 11(41):8126-40. PubMed ID: 26338226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.