These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27018332)

  • 1. Studies on the in vitro and in vivo degradation behavior of amino acid derivative-based organogels.
    Li Z; Cao J; Hu B; Li H; Liu H; Han F; Liu Z; Tong C; Li S
    Drug Dev Ind Pharm; 2016 Nov; 42(11):1732-41. PubMed ID: 27018332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled drug delivery system based on low-molecular-weight bis-amide organogelator: synthesis, properties and in vivo evaluation.
    Li Z; Cao J; Li H; Liu H; Han F; Liu Z; Tong C; Li S
    Drug Deliv; 2016 Oct; 23(8):3168-3178. PubMed ID: 26912188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of glutamate-based organogels for biodegradable implants: In vitro study and in vivo observation.
    Hu B; Wang W; Wang Y; Yang Y; Xu L; Li S
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():80-90. PubMed ID: 29025677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organogels based on amino acid derivatives and their optimization for drug release using response surface methodology.
    Hu B; Yan H; Sun Y; Chen X; Sun Y; Li S; Jing Y; Li H
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):266-275. PubMed ID: 31851842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic modifications of amino acid-based organogelators for the investigation of structure-property correlations in drug delivery system.
    Hu B; Sun W; Li H; Sui H; Li S
    Int J Pharm; 2018 Aug; 547(1-2):637-647. PubMed ID: 29933060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents.
    Esposito CL; Tardif V; Sarrazin M; Kirilov P; Roullin VG
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110999. PubMed ID: 32993979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined effect of shearing and cooling rate on the rheology of organogels developed by selected gelators.
    De la Peña-Gil A; Álvarez-Mitre FM; González-Chávez MM; Charó-Alonso MA; Toro-Vazquez JF
    Food Res Int; 2017 Mar; 93():52-65. PubMed ID: 28290280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parenteral thermo-sensitive organogel for schizophrenia therapy, in vitro and in vivo evaluation.
    Wang D; Zhao J; Liu X; Sun F; Zhou Y; Teng L; Li Y
    Eur J Pharm Sci; 2014 Aug; 60():40-8. PubMed ID: 24815944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.
    Jhawat V; Gupta S; Saini V
    Drug Deliv; 2016 Nov; 23(9):3573-3581. PubMed ID: 27494650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds.
    Iwanaga K; Sumizawa T; Miyazaki M; Kakemi M
    Int J Pharm; 2010 Mar; 388(1-2):123-8. PubMed ID: 20045041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoengineering of a biocompatible organogel by thermal processing.
    Li JL; Wang RY; Liu XY; Pan HH
    J Phys Chem B; 2009 Apr; 113(15):5011-5. PubMed ID: 19309102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug.
    Pereira Camelo SR; Franceschi S; Perez E; Girod Fullana S; Ré MI
    Drug Dev Ind Pharm; 2016; 42(6):985-97. PubMed ID: 26548427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Solvent Parameters for Predicting Organogel Formation.
    Hu B; Sun W; Yang B; Li H; Zhou L; Li S
    AAPS PharmSciTech; 2018 Jul; 19(5):2288-2300. PubMed ID: 29845502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel chiral separation material: polymerized organogel formed by chiral gelators for the separation of D- and L-phenylalanine.
    Fu X; Yang Y; Wang N; Wang H; Yang Y
    J Mol Recognit; 2007; 20(4):238-44. PubMed ID: 17624913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipase is essential for the study of in vitro release kinetics from organogels.
    Dufresne MH; Marouf E; Kränzlin Y; Gauthier MA; Leroux JC
    Mol Pharm; 2012 Jun; 9(6):1803-11. PubMed ID: 22510056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of organogel components on in vitro nasal delivery of propranolol hydrochloride.
    Pisal S; Shelke V; Mahadik K; Kadam S
    AAPS PharmSciTech; 2004 Sep; 5(4):e63. PubMed ID: 15760060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved initial burst of estradiol organogel as long-term in situ drug delivery implant: formulation, in vitro and in vivo characterization.
    Yang Y; Xu L; Gao Y; Wang Q; Che X; Li S
    Drug Dev Ind Pharm; 2012 May; 38(5):550-6. PubMed ID: 22420863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects.
    Frkanec L; Zinić M
    Chem Commun (Camb); 2010 Jan; 46(4):522-37. PubMed ID: 20062853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of organogel with tea polyphenols complex for enhancing the antioxidation properties of edible oil.
    Shi R; Zhang Q; Vriesekoop F; Yuan Q; Liang H
    J Agric Food Chem; 2014 Aug; 62(33):8379-84. PubMed ID: 25089366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages.
    Reddy SM; Shanmugam G; Duraipandy N; Kiran MS; Mandal AB
    Soft Matter; 2015 Nov; 11(41):8126-40. PubMed ID: 26338226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.