These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27018660)

  • 21. Efficient light management in vertical nanowire arrays for photovoltaics.
    Anttu N; Xu HQ
    Opt Express; 2013 May; 21 Suppl 3():A558-75. PubMed ID: 24104444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity.
    Li J; Zhang Y; To S; You L; Sun Y
    ACS Nano; 2011 Aug; 5(8):6661-8. PubMed ID: 21815637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoelectrochemical CO2 Reduction by a Molecular Cobalt(II) Catalyst on Planar and Nanostructured Si Surfaces.
    He D; Jin T; Li W; Pantovich S; Wang D; Li G
    Chemistry; 2016 Sep; 22(37):13064-7. PubMed ID: 27433926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode.
    AlOtaibi B; Harati M; Fan S; Zhao S; Nguyen HP; Kibria MG; Mi Z
    Nanotechnology; 2013 May; 24(17):175401. PubMed ID: 23548782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urchin-like nanowire array: a strategy for high-performance ZnO-based electrode utilized in photoelectrochemistry.
    Hieu HN; Dung NQ; Kim J; Kim D
    Nanoscale; 2013 Jun; 5(12):5530-8. PubMed ID: 23673442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry.
    Laskowski FAL; Oener SZ; Nellist MR; Gordon AM; Bain DC; Fehrs JL; Boettcher SW
    Nat Mater; 2020 Jan; 19(1):69-76. PubMed ID: 31591528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays.
    Kornienko N; Gibson NA; Zhang H; Eaton SW; Yu Y; Aloni S; Leone SR; Yang P
    ACS Nano; 2016 May; 10(5):5525-35. PubMed ID: 27124203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface Nano-Patterning for the Bottom-Up Growth of III-V Semiconductor Nanowire Ordered Arrays.
    Demontis V; Zannier V; Sorba L; Rossella F
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.
    Chen Y; Kivisaari P; Pistol ME; Anttu N
    Nanotechnology; 2016 Oct; 27(43):435404. PubMed ID: 27659909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation.
    Fountaine KT; Kendall CG; Atwater HA
    Opt Express; 2014 May; 22 Suppl 3():A930-40. PubMed ID: 24922398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying Photocurrent Loss of a Single Particle-Particle Interface in Nanostructured Photoelectrodes.
    Hesari M; Sambur JB; Mao X; Jung W; Chen P
    Nano Lett; 2019 Feb; 19(2):958-962. PubMed ID: 30615831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diameter-dependent surface photovoltage and surface state density in single semiconductor nanowires.
    Soudi A; Hsu CH; Gu Y
    Nano Lett; 2012 Oct; 12(10):5111-6. PubMed ID: 22985208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. InGaN/GaN nanowires as a new platform for photoelectrochemical sensors - detection of NADH.
    Riedel M; Hölzel S; Hille P; Schörmann J; Eickhoff M; Lisdat F
    Biosens Bioelectron; 2017 Aug; 94():298-304. PubMed ID: 28315593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review on photonic properties of nanowires for photovoltaics.
    Mokkapati S; Jagadish C
    Opt Express; 2016 Jul; 24(15):17345-58. PubMed ID: 27464182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. III-V nanowire arrays: growth and light interaction.
    Heiss M; Russo-Averchi E; Dalmau-Mallorquí A; Tütüncüoğlu G; Matteini F; Rüffer D; Conesa-Boj S; Demichel O; Alarcon-Lladó E; Fontcuberta i Morral A
    Nanotechnology; 2014 Jan; 25(1):014015. PubMed ID: 24334728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting.
    Li X; Lu W; Dong W; Chen Q; Wu D; Zhou W; Chen L
    Nanoscale; 2013 Jun; 5(12):5257-61. PubMed ID: 23652765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneous p-n Junction CdS/Cu
    Wang L; Wang W; Chen Y; Yao L; Zhao X; Shi H; Cao M; Liang Y
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11652-11662. PubMed ID: 29544248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition.
    Dasog M; Carim AI; Yalamanchili S; Atwater HA; Lewis NS
    Nano Lett; 2016 Aug; 16(8):5015-21. PubMed ID: 27322391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays.
    Yang Y; Wang M; Zhang P; Wang W; Han H; Sun L
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30143-30151. PubMed ID: 27762535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.