These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27018717)

  • 1. Combined Electron Paramagnetic Resonance and Atomic Absorption Spectroscopy/Inductively Coupled Plasma Analysis As Diagnostics for Soluble Manganese Species from Mn-Based Positive Electrode Materials in Li-ion Cells.
    Shilina Y; Ziv B; Meir A; Banerjee A; Ruthstein S; Luski S; Aurbach D; Halalay IC
    Anal Chem; 2016 Apr; 88(8):4440-7. PubMed ID: 27018717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.
    Banerjee A; Shilina Y; Ziv B; Ziegelbauer JM; Luski S; Aurbach D; Halalay IC
    J Am Chem Soc; 2017 Feb; 139(5):1738-1741. PubMed ID: 28122187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode.
    Wang J; Zhang Q; Li X; Wang Z; Guo H; Xu D; Zhang K
    Phys Chem Chem Phys; 2014 Aug; 16(30):16021-9. PubMed ID: 24963917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Degradation at the Lithium-Ion Battery Cathode/Electrolyte Interface: Connecting Transition-Metal Dissolution Mechanisms to Electrolyte Composition.
    Huang D; Engtrakul C; Nanayakkara S; Mulder DW; Han SD; Zhou M; Luo H; Tenent RC
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11930-11939. PubMed ID: 33660970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mn Ion Dissolution Mechanism for Lithium-Ion Battery with LiMn
    Zhou G; Sun X; Li QH; Wang X; Zhang JN; Yang W; Yu X; Xiao R; Li H
    J Phys Chem Lett; 2020 Apr; 11(8):3051-3057. PubMed ID: 32223246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method development for the investigation of Mn
    Hanf L; Brüning K; Winter M; Nowak S
    Electrophoresis; 2023 Jan; 44(1-2):89-95. PubMed ID: 36148595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Surface Modification on Nano-Structured LiNi(0.5)Mn(1.5)O4 Spinel Materials.
    Cho HM; Chen MV; MacRae AC; Meng YS
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16231-9. PubMed ID: 26172214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a Sodium Phosphate Electrolyte Additive on Elevated Temperature Performance of Spinel Lithium Manganese Oxide Cathodes.
    Jo M; Park SH; Lee H
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mn
    Hanf L; Henschel J; Diehl M; Winter M; Nowak S
    Electrophoresis; 2020 May; 41(9):697-704. PubMed ID: 32061101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Electrochemical Analyses on the Transformation of CaFe
    Mukai K; Uyama T; Yamada I
    ACS Omega; 2019 Apr; 4(4):6459-6467. PubMed ID: 31459779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries.
    Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Chromium and Niobium Doping on the Morphology and Electrochemical Performance of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Material.
    Mao J; Dai K; Xuan M; Shao G; Qiao R; Yang W; Battaglia VS; Liu G
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9116-24. PubMed ID: 27008976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell structure of LiMn
    Tomon C; Sarawutanukul S; Phattharasupakun N; Duangdangchote S; Chomkhuntod P; Joraleechanchai N; Bunyanidhi P; Sawangphruk M
    Commun Chem; 2022 Apr; 5(1):54. PubMed ID: 36697755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells.
    Gowda SR; Gallagher KG; Croy JR; Bettge M; Thackeray MM; Balasubramanian M
    Phys Chem Chem Phys; 2014 Apr; 16(15):6898-902. PubMed ID: 24608259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.
    Liu H; Wang J; Zhang X; Zhou D; Qi X; Qiu B; Fang J; Kloepsch R; Schumacher G; Liu Z; Li J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4661-75. PubMed ID: 26824793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Surface Chemical Stability of LiMn
    Shu Y; Zeng J; Huang J; Hu G; Du K; Peng Z; Cao YB
    ChemSusChem; 2021 Dec; 14(24):5476-5487. PubMed ID: 34637603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries.
    Zheng J; Kan WH; Manthiram A
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical surface atomic structure of a manganese-based spinel cathode for lithium-ion batteries.
    Lee S; Yoon G; Jeong M; Lee MJ; Kang K; Cho J
    Angew Chem Int Ed Engl; 2015 Jan; 54(4):1153-8. PubMed ID: 25470462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium Bis(trimethylsilyl) Phosphate as a Novel Bifunctional Additive for High-Voltage LiNi
    Kim J; Adiraju VAK; Rodrigo N; Hoffmann J; Payne M; Lucht BL
    ACS Appl Mater Interfaces; 2021 May; 13(19):22351-22360. PubMed ID: 33945248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.