These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27018869)

  • 21. Increased viscosity is protective for arteriolar endothelium and microvascular perfusion during severe hemodilution in hamster cheek pouch.
    Bertuglia S
    Microvasc Res; 2001 Jan; 61(1):56-63. PubMed ID: 11162196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perfusion pressure and blood flow determine microvascular apparent viscosity.
    Yalcin O; Ortiz D; Williams AT; Johnson PC; Cabrales P
    Exp Physiol; 2015 Aug; 100(8):977-87. PubMed ID: 26011432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arteriovenous distribution of hemodynamic parameters in the rat dental pulp.
    Kim S; Lipowsky HH; Usami S; Chien S
    Microvasc Res; 1984 Jan; 27(1):28-38. PubMed ID: 6708825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A velocity profile equation for blood flow in small arterioles and venules of small mammals in vivo and an evaluation based on literature data.
    Koutsiaris AG
    Clin Hemorheol Microcirc; 2009; 43(4):321-34. PubMed ID: 19996521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contraction-evoked vasodilation and functional hyperaemia are compromised in branching skeletal muscle arterioles of young pre-diabetic mice.
    Novielli NM; Jackson DN
    Acta Physiol (Oxf); 2014 Jun; 211(2):371-84. PubMed ID: 24703586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laser speckle flowmetry method for measuring spatial and temporal hemodynamic alterations throughout large microvascular networks.
    Meisner JK; Sumer S; Murrell KP; Higgins TJ; Price RJ
    Microcirculation; 2012 Oct; 19(7):619-31. PubMed ID: 22591575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating blood flow in skeletal muscle arteriolar trees reconstructed from in vivo data using the Fry approach.
    Farid Z; Saleem AH; Al-Khazraji BK; Jackson DN; Goldman D
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28470885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retinal arteriolar responses to acute severe elevation in systemic blood pressure in cats: role of endothelium-derived factors.
    Nakabayashi S; Nagaoka T; Tani T; Sogawa K; Hein TW; Kuo L; Yoshida A
    Exp Eye Res; 2012 Oct; 103():63-70. PubMed ID: 22940370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-affinity hemoglobin increases tissue PO2 and decreases arteriolar diameter and flow in the rat cremaster muscle.
    Kunert MP; Liard JF; Abraham DJ; Lombard JH
    Microvasc Res; 1996 Jul; 52(1):58-68. PubMed ID: 8812756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Attenuation of blood flow-induced dilation in arterioles after muscle contraction.
    Cábel M; Smiesko V; Johnson PC
    Am J Physiol; 1994 May; 266(5 Pt 2):H2114-21. PubMed ID: 8203610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of big endothelin-1 in comparison with endothelin-1 on the microvascular blood flow velocity and diameter of rat mesentery in vivo.
    Abdelhalim MA
    Microvasc Res; 2006 Nov; 72(3):108-12. PubMed ID: 17028040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microvascular blood flow resistance: role of endothelial surface layer.
    Pries AR; Secomb TW; Jacobs H; Sperandio M; Osterloh K; Gaehtgens P
    Am J Physiol; 1997 Nov; 273(5):H2272-9. PubMed ID: 9374763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of erythrocyte aggregation at pathological levels on NO/O2 transport in small arterioles.
    Cho S; Namgung B; Kim HS; Leo HL; Kim S
    Clin Hemorheol Microcirc; 2015; 59(2):163-75. PubMed ID: 24732346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microvascular development during normal growth and reduced blood flow: introduction of a new model.
    Wang DH; Prewitt RL
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1966-72. PubMed ID: 2058728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks.
    Pan Q; Wang R; Reglin B; Cai G; Yan J; Pries AR; Ning G
    J Biomech Eng; 2014 Jan; 136(1):011009. PubMed ID: 24190506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of erythrocyte flow in the choroid of the albino rat.
    Braun RD; Dewhirst MW; Hatchell DL
    Am J Physiol; 1997 Mar; 272(3 Pt 2):H1444-53. PubMed ID: 9087623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Albumin therapy improves local vascular dynamics in a rat model of primary microvascular thrombosis: a two-photon laser-scanning microscopy study.
    Nimmagadda A; Park HP; Prado R; Ginsberg MD
    Stroke; 2008 Jan; 39(1):198-204. PubMed ID: 18032741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetylcholine-induced and nitric oxide-mediated vasodilation in burns.
    Meng F; Korompai FL; Lynch DM; Yuan YS
    J Surg Res; 1998 Dec; 80(2):236-42. PubMed ID: 9878319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Renal cortical and medullary microvascular blood flow autoregulation in rat.
    Harrison-Bernard LM; Navar LG
    Kidney Int Suppl; 1996 Dec; 57():S23-9. PubMed ID: 8941918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.