These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 27018904)
1. Use of Supplemental Short Pre-Contoured Accessory Rods and Cobalt Chrome Alloy Posterior Rods Reduces Primary Rod Strain and Range of Motion Across the Pedicle Subtraction Osteotomy Level: An In Vitro Biomechanical Study. Hallager DW; Gehrchen M; Dahl B; Harris JA; Gudipally M; Jenkins S; Wu AM; Bucklen BS Spine (Phila Pa 1976); 2016 Apr; 41(7):E388-95. PubMed ID: 27018904 [TBL] [Abstract][Full Text] [Related]
2. Kinematic efficacy of supplemental anterior lumbar interbody fusion at lumbosacral levels in thoracolumbosacral deformity correction with and without pedicle subtraction osteotomy at L3: an in vitro cadaveric study. Dahl BT; Harris JA; Gudipally M; Moldavsky M; Khalil S; Bucklen BS Eur Spine J; 2017 Nov; 26(11):2773-2781. PubMed ID: 28770402 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical advantages of supplemental accessory and satellite rods with and without interbody cages implantation for the stabilization of pedicle subtraction osteotomy. La Barbera L; Brayda-Bruno M; Liebsch C; Villa T; Luca A; Galbusera F; Wilke HJ Eur Spine J; 2018 Sep; 27(9):2357-2366. PubMed ID: 29740675 [TBL] [Abstract][Full Text] [Related]
4. Pedicle Subtraction Osteotomy Construct Optimization: A Cadaveric Study of Various Multirod and Interbody Configurations. Pereira BA; Godzik J; Lehrman JN; Sawa AGU; Hlubek RJ; Uribe JS; Kelly BP; Turner JD Spine (Phila Pa 1976); 2022 Apr; 47(8):640-647. PubMed ID: 35102122 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical in vitro comparison between anterior column realignment and pedicle subtraction osteotomy for severe sagittal imbalance correction. La Barbera L; Wilke HJ; Liebsch C; Villa T; Luca A; Galbusera F; Brayda-Bruno M Eur Spine J; 2020 Jan; 29(1):36-44. PubMed ID: 31414289 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical analysis of cervicothoracic junction osteotomy in cadaveric model of ankylosing spondylitis: effect of rod material and diameter. Scheer JK; Tang JA; Deviren V; Acosta F; Buckley JM; Pekmezci M; McClellan RT; Ames CP J Neurosurg Spine; 2011 Mar; 14(3):330-5. PubMed ID: 21235305 [TBL] [Abstract][Full Text] [Related]
7. Optimal satellite rod constructs to mitigate rod failure following pedicle subtraction osteotomy (PSO): a finite element study. Seyed Vosoughi A; Joukar A; Kiapour A; Parajuli D; Agarwal AK; Goel VK; Zavatsky J Spine J; 2019 May; 19(5):931-941. PubMed ID: 30414992 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive Evaluation of Accessory Rod Position, Rod Material and Diameter, Use of Cross-connectors, and Anterior Column Support in a Pedicle Subtraction Osteotomy Model: Part I: Effects on Apical Rod Strain: An In Vitro and In Silico Biomechanical Study. Gelb DE; Tareen J; Jazini E; Ludwig SC; Harris JA; Amin DB; Wang W; Van Horn MR; Patel PD; Mirabile BA; Bucklen BS Spine (Phila Pa 1976); 2021 Jan; 46(1):E1-E11. PubMed ID: 33315360 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical stability of transverse connectors in the setting of a thoracic pedicle subtraction osteotomy. Lehman RA; Kang DG; Wagner SC; Paik H; Cardoso MJ; Bernstock JD; Dmitriev AE Spine J; 2015 Jul; 15(7):1629-35. PubMed ID: 25771755 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical Analysis of 2 Versus 4 Rods Across the Cervicothoracic Junction in a Human Cadaveric Model. Pivazyan G; Winters CG; Brooks DM; Sandhu FA; Cunningham BW Neurosurgery; 2024 Jan; 94(1):217-225. PubMed ID: 37706689 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive In Silico Evaluation of Accessory Rod Position, Rod Material and Diameter, Use of Cross-connectors, and Anterior Column Support in a Pedicle Subtraction Osteotomy Model: Part II: Effects on Lumbosacral Rod and Screw Strain. Jazini E; Gelb DE; Tareen J; Ludwig SC; Harris JA; Amin DB; Wang W; Van Horn MR; Patel PD; Mirabile BA; Bucklen BS Spine (Phila Pa 1976); 2021 Jan; 46(1):E12-E22. PubMed ID: 33315361 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical effect of transforaminal lumbar interbody fusion and axial interbody threaded rod on range of motion and S1 screw loading in a destabilized L5-S1 spondylolisthesis model. Fleischer GD; Hart D; Ferrara LA; Freeman AL; Avidano EE Spine (Phila Pa 1976); 2014 Jan; 39(2):E82-8. PubMed ID: 24150429 [TBL] [Abstract][Full Text] [Related]
13. Minimally invasive multilevel lateral lumbar interbody fusion with posterior column osteotomy compared with pedicle subtraction osteotomy for adult spinal deformity. Lee KY; Lee JH; Kang KC; Shin SJ; Shin WJ; Im SK; Park MS Spine J; 2020 Jun; 20(6):925-933. PubMed ID: 31837467 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Gerber M; Crawford NR; Chamberlain RH; Fifield MS; LeHuec JC; Dickman CA Spine (Phila Pa 1976); 2006 Apr; 31(7):762-8. PubMed ID: 16582849 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of posterior fusion constructs as treatments for middle and posterior column injuries: an in vitro biomechanical investigation. Doulgeris JJ; Aghayev K; Gonzalez-Blohm SA; Del Valle M; Waddell J; Lee WE; Vrionis FD Clin Biomech (Bristol); 2013 Jun; 28(5):483-9. PubMed ID: 23707137 [TBL] [Abstract][Full Text] [Related]
16. Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. Smith JS; Shaffrey E; Klineberg E; Shaffrey CI; Lafage V; Schwab FJ; Protopsaltis T; Scheer JK; Mundis GM; Fu KM; Gupta MC; Hostin R; Deviren V; Kebaish K; Hart R; Burton DC; Line B; Bess S; Ames CP; J Neurosurg Spine; 2014 Dec; 21(6):994-1003. PubMed ID: 25325175 [TBL] [Abstract][Full Text] [Related]
17. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study. Techy F; Mageswaran P; Colbrunn RW; Bonner TF; McLain RF Spine J; 2013 May; 13(5):572-9. PubMed ID: 23498926 [TBL] [Abstract][Full Text] [Related]
18. The effect of cement augmentation and extension of posterior instrumentation on stabilization and adjacent level effects in the elderly spine. Tan JS; Singh S; Zhu QA; Dvorak MF; Fisher CG; Oxland TR Spine (Phila Pa 1976); 2008 Dec; 33(25):2728-40. PubMed ID: 19050578 [TBL] [Abstract][Full Text] [Related]
19. Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages. Nayak AN; Gutierrez S; Billys JB; Santoni BG; Castellvi AE Spine J; 2013 Oct; 13(10):1331-8. PubMed ID: 23685215 [TBL] [Abstract][Full Text] [Related]
20. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. Bruner HJ; Guan Y; Yoganandan N; Pintar FA; Maiman DJ; Slivka MA J Neurosurg Spine; 2010 Dec; 13(6):766-72. PubMed ID: 21121756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]