BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 27018980)

  • 1. Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice.
    Sala-Rabanal M; Hirayama BA; Ghezzi C; Liu J; Huang SC; Kepe V; Koepsell H; Yu A; Powell DR; Thorens B; Wright EM; Barrio JR
    J Physiol; 2016 Aug; 594(15):4425-38. PubMed ID: 27018980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal absorption of glucose in mice as determined by positron emission tomography.
    Sala-Rabanal M; Ghezzi C; Hirayama BA; Kepe V; Liu J; Barrio JR; Wright EM
    J Physiol; 2018 Jul; 596(13):2473-2489. PubMed ID: 29707805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional expression of SGLTs in rat brain.
    Yu AS; Hirayama BA; Timbol G; Liu J; Basarah E; Kepe V; Satyamurthy N; Huang SC; Wright EM; Barrio JR
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1277-84. PubMed ID: 20826762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-glucose cotransporters: new targets of cancer therapy?
    Madunić IV; Madunić J; Breljak D; Karaica D; Sabolić I
    Arh Hig Rada Toksikol; 2018 Dec; 69(4):278-285. PubMed ID: 30864374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas.
    Kepe V; Scafoglio C; Liu J; Yong WH; Bergsneider M; Huang SC; Barrio JR; Wright EM
    J Neurooncol; 2018 Jul; 138(3):557-569. PubMed ID: 29525972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional expression of sodium-glucose transporters in cancer.
    Scafoglio C; Hirayama BA; Kepe V; Liu J; Ghezzi C; Satyamurthy N; Moatamed NA; Huang J; Koepsell H; Barrio JR; Wright EM
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4111-9. PubMed ID: 26170283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does 2-FDG PET Accurately Reflect Quantitative In Vivo Glucose Utilization?
    Barrio JR; Huang SC; Satyamurthy N; Scafoglio CS; Yu AS; Alavi A; Krohn KA
    J Nucl Med; 2020 Jun; 61(6):931-937. PubMed ID: 31676728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose transporters in pancreatic islets.
    Berger C; Zdzieblo D
    Pflugers Arch; 2020 Sep; 472(9):1249-1272. PubMed ID: 32394191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of glucose transporters in renal diseases.
    Szablewski L
    J Biomed Sci; 2017 Aug; 24(1):64. PubMed ID: 28854935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors.
    Blaschek W
    Planta Med; 2017 Aug; 83(12-13):985-993. PubMed ID: 28395363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dapagliflozin Binds Specifically to Sodium-Glucose Cotransporter 2 in the Proximal Renal Tubule.
    Ghezzi C; Yu AS; Hirayama BA; Kepe V; Liu J; Scafoglio C; Powell DR; Huang SC; Satyamurthy N; Barrio JR; Wright EM
    J Am Soc Nephrol; 2017 Mar; 28(3):802-810. PubMed ID: 27620988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.
    Chichger H; Cleasby ME; Srai SK; Unwin RJ; Debnam ES; Marks J
    Exp Physiol; 2016 Jun; 101(6):731-42. PubMed ID: 27164183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice.
    Wuest M; Hamann I; Bouvet V; Glubrecht D; Marshall A; Trayner B; Soueidan OM; Krys D; Wagner M; Cheeseman C; West F; Wuest F
    Mol Pharmacol; 2018 Feb; 93(2):79-89. PubMed ID: 29142019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the transcellular transport of FDG and D-glucose by the kidney epithelial cell line, LLC-PK1.
    Kobayashi M; Shikano N; Nishii R; Kiyono Y; Araki H; Nishi K; Oh M; Okudaira H; Ogura M; Yoshimoto M; Okazawa H; Fujibayashi Y; Kawai K
    Nucl Med Commun; 2010 Feb; 31(2):141-6. PubMed ID: 19949354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Functional Assessment of Sodium-Glucose Cotransporters (SGLTs) Using [
    Matsusaka Y; Chen X; Arias-Loza P; Werner RA; Nose N; Sasaki T; Rowe SP; Pomper MG; Lapa C; Higuchi T
    Mol Imaging; 2022; 2022():4635171. PubMed ID: 35903251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2.
    Ghezzi C; Loo DDF; Wright EM
    Diabetologia; 2018 Oct; 61(10):2087-2097. PubMed ID: 30132032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional distribution of SGLT activity in rat brain in vivo.
    Yu AS; Hirayama BA; Timbol G; Liu J; Diez-Sampedro A; Kepe V; Satyamurthy N; Huang SC; Wright EM; Barrio JR
    Am J Physiol Cell Physiol; 2013 Feb; 304(3):C240-7. PubMed ID: 23151803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fructose reabsorption by rat proximal tubules: role of Na
    Gonzalez-Vicente A; Cabral PD; Hong NJ; Asirwatham J; Saez F; Garvin JL
    Am J Physiol Renal Physiol; 2019 Mar; 316(3):F473-F480. PubMed ID: 30565998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose transporters in cardiovascular system in health and disease.
    Bertrand L; Auquier J; Renguet E; Angé M; Cumps J; Horman S; Beauloye C
    Pflugers Arch; 2020 Sep; 472(9):1385-1399. PubMed ID: 32809061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat.
    Vestri S; Okamoto MM; de Freitas HS; Aparecida Dos Santos R; Nunes MT; Morimatsu M; Heimann JC; Machado UF
    J Membr Biol; 2001 Jul; 182(2):105-12. PubMed ID: 11447502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.