These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27019028)

  • 1. A phantom-based feasibility study for detection of gadolinium in bone in-vivo using X-ray fluorescence.
    Lord ML; McNeill FE; Gräfe JL; Noseworthy MD; Chettle DR
    Appl Radiat Isot; 2016 Jun; 112():103-9. PubMed ID: 27019028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confirming improved detection of gadolinium in bone using in vivo XRF.
    Lord ML; McNeill FE; Gräfe JL; Galusha AL; Parsons PJ; Noseworthy MD; Howard L; Chettle DR
    Appl Radiat Isot; 2017 Feb; 120():111-118. PubMed ID: 27987464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A feasibility study to determine the potential of in vivo detection of gadolinium by x-ray fluorescence (XRF) following gadolinium-based contrast-enhanced MRI.
    Mostafaei F; McNeill FE; Chettle DR; Noseworthy MD
    Physiol Meas; 2015 Jan; 36(1):N1-13. PubMed ID: 25501799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ex vivo quantification of lanthanum and gadolinium in post-mortem human tibiae with estimated barium and iodine concentrations using K x-ray fluorescence.
    Nguyen J; Crawford D; Howarth D; Sukhu B; Pejović-Milić A; Gräfe JL
    Physiol Meas; 2019 Sep; 40(8):085006. PubMed ID: 31422953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent normalization for in vivo measurements of gadolinium in bone.
    Keldani Z; Lord ML; McNeill FE; Chettle DR; Gräfe JL
    Physiol Meas; 2017 Sep; 38(10):1848-1858. PubMed ID: 28832339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The feasibility of NaGdF
    Zhang W; Zhang S; Gao P; Lan B; Li L; Zhang X; Li L; Lu H
    Med Phys; 2020 Feb; 47(2):662-671. PubMed ID: 31742714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods.
    Shehab H; Desouza ED; O'Meara J; Pejović-Milić A; Chettle DR; Fleming DE; McNeill FE
    Physiol Meas; 2016 Jan; 37(1):145-61. PubMed ID: 26683849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray fluorescence elemental mapping and microscopy to follow hepatic disposition of a Gd-based magnetic resonance imaging contrast agent.
    Delfino R; Altissimo M; Menk RH; Alberti R; Klatka T; Frizzi T; Longoni A; Salomè M; Tromba G; Arfelli F; Clai M; Vaccari L; Lorusso V; Tiribelli C; Pascolo L
    Clin Exp Pharmacol Physiol; 2011 Dec; 38(12):834-45. PubMed ID: 21957877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observed Deposition of Gadolinium in Bone Using a New Noninvasive in Vivo Biomedical Device: Results of a Small Pilot Feasibility Study.
    Lord ML; Chettle DR; Gräfe JL; Noseworthy MD; McNeill FE
    Radiology; 2018 Apr; 287(1):96-103. PubMed ID: 29237148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and imaging of gadolinium accumulation in human bone tissue by micro- and submicro-XRF.
    Turyanskaya A; Rauwolf M; Pichler V; Simon R; Burghammer M; Fox OJL; Sawhney K; Hofstaetter JG; Roschger A; Roschger P; Wobrauschek P; Streli C
    Sci Rep; 2020 Apr; 10(1):6301. PubMed ID: 32286449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging.
    Kuang Y; Pratx G; Bazalova M; Meng B; Qian J; Xing L
    IEEE Trans Med Imaging; 2013 Feb; 32(2):262-7. PubMed ID: 23076031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Portable x-ray fluorescence for the analysis of chromium in nail and nail clippings.
    Fleming DE; Ware CS
    Appl Radiat Isot; 2017 Mar; 121():91-95. PubMed ID: 28040603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new anthropometric phantom for calibrating in vivo measurements of stable lead in the human leg using x-ray fluorescence.
    Spitz H; Jenkins M; Lodwick J; Bornschein R
    Health Phys; 2000 Feb; 78(2):159-69. PubMed ID: 10647982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The feasibility of in vivo detection of lanthanum using a
    Nguyen J; Keldani Z; Da Silva E; Pejović-Milić A; Gräfe JL
    Physiol Meas; 2017 Aug; 38(9):1766-1775. PubMed ID: 28752824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of bone strontium levels in humans by in vivo x-ray fluorescence.
    Pejović-Milić A; Stronach IM; Gyorffy J; Webber CE; Chettle DR
    Med Phys; 2004 Mar; 31(3):528-38. PubMed ID: 15070251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of excess gadolinium into human bone from medical contrast agents.
    Darrah TH; Prutsman-Pfeiffer JJ; Poreda RJ; Ellen Campbell M; Hauschka PV; Hannigan RE
    Metallomics; 2009 Nov; 1(6):479-88. PubMed ID: 21305156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The gadolinium complexes with polyoxometalates as potential MRI contrast agents.
    Li Z; Li W; Li X; Pei F; Li Y; Lei H
    Magn Reson Imaging; 2007 Apr; 25(3):412-7. PubMed ID: 17371733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 4 x 500 mm2 cloverleaf detector system for in vivo bone lead measurement.
    Fleming DE; Mills CE
    Med Phys; 2007 Mar; 34(3):945-51. PubMed ID: 17441240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K x-ray fluorescence measurements of bone lead concentration: the analysis of low-level data.
    Kim R; Aro A; Rotnitzky A; Amarasiriwardena C; Hu H
    Phys Med Biol; 1995 Sep; 40(9):1475-85. PubMed ID: 8532760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvements in the calibration of 109Cd K x-ray fluorescence systems for measuring bone lead in vivo.
    Aro AC; Todd AC; Amarasiriwardena C; Hu H
    Phys Med Biol; 1994 Dec; 39(12):2263-71. PubMed ID: 15551552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.