These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27019208)

  • 1. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.
    Kolomenskiy D; Maeda M; Engels T; Liu H; Schneider K; Nave JC
    PLoS One; 2016; 11(3):e0152072. PubMed ID: 27019208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
    Bluman J; Kang CK
    Bioinspir Biomim; 2017 Jun; 12(4):046004. PubMed ID: 28463224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
    Phan HV; Truong QT; Au TK; Park HC
    Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.
    van Veen WG; van Leeuwen JL; Muijres FT
    J R Soc Interface; 2019 Jun; 16(155):20190118. PubMed ID: 31213176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover.
    Kang CK; Shyy W
    J R Soc Interface; 2014 Dec; 11(101):20140933. PubMed ID: 25297319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering.
    Sun M; Lan SL
    J Exp Biol; 2004 May; 207(Pt 11):1887-901. PubMed ID: 15107443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing.
    Kang CK; Shyy W
    J R Soc Interface; 2013 Aug; 10(85):20130361. PubMed ID: 23760300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of chordwise functionally graded flexural rigidity in flapping wings using a two-dimensional pitch-plunge model.
    Reade J; Jankauski M
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamics and flow features of a damselfly in takeoff flight.
    Bode-Oke AT; Zeyghami S; Dong H
    Bioinspir Biomim; 2017 Sep; 12(5):056006. PubMed ID: 28699620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot.
    Phan HV; Park HC
    Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.
    Sane SP; Dickinson MH
    J Exp Biol; 2002 Apr; 205(Pt 8):1087-96. PubMed ID: 11919268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsteady aerodynamic forces of a flapping wing.
    Wu JH; Sun M
    J Exp Biol; 2004 Mar; 207(Pt 7):1137-50. PubMed ID: 14978056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments.
    Wang ZJ; Birch JM; Dickinson MH
    J Exp Biol; 2004 Jan; 207(Pt 3):449-60. PubMed ID: 14691093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reynolds number dependency of an insect-based flapping wing.
    Han JS; Chang JW; Kim ST
    Bioinspir Biomim; 2014; 9(4):046012. PubMed ID: 25381677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.