These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 27019343)

  • 1. Deciphering the Complexity of Ligand-Protein Recognition Pathways Using Supervised Molecular Dynamics (SuMD) Simulations.
    Cuzzolin A; Sturlese M; Deganutti G; Salmaso V; Sabbadin D; Ciancetta A; Moro S
    J Chem Inf Model; 2016 Apr; 56(4):687-705. PubMed ID: 27019343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supervised Molecular Dynamics (SuMD) Approaches in Drug Design.
    Sabbadin D; Salmaso V; Sturlese M; Moro S
    Methods Mol Biol; 2018; 1824():287-298. PubMed ID: 30039414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time scale.
    Sabbadin D; Moro S
    J Chem Inf Model; 2014 Feb; 54(2):372-6. PubMed ID: 24456045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Trends in Inspecting GPCR-ligand Recognition Process: the Contribution of the Molecular Modeling Section (MMS) at the University of Padova.
    Ciancetta A; Cuzzolin A; Deganutti G; Sturlese M; Salmaso V; Cristiani A; Sabbadin D; Moro S
    Mol Inform; 2016 Sep; 35(8-9):440-8. PubMed ID: 27546048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Supervised Molecular Dynamics Approach to Unbiased Ligand-Protein Unbinding.
    Deganutti G; Moro S; Reynolds CA
    J Chem Inf Model; 2020 Mar; 60(3):1804-1817. PubMed ID: 32126172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Protein-Peptide Recognition Pathways Using a Supervised Molecular Dynamics Approach.
    Salmaso V; Sturlese M; Cuzzolin A; Moro S
    Structure; 2017 Apr; 25(4):655-662.e2. PubMed ID: 28319010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations.
    Bolcato G; Bissaro M; Deganutti G; Sturlese M; Moro S
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32392873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Hydrophobic Ligands Entry and Exit from the GPCR Binding Site-SMD and SuMD Simulations.
    Jakowiecki J; Orzeł U; Chawananon S; Miszta P; Filipek S
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPCRs: What Can We Learn from Molecular Dynamics Simulations?
    Velgy N; Hedger G; Biggin PC
    Methods Mol Biol; 2018; 1705():133-158. PubMed ID: 29188561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein-Ligand Association.
    Cuzzolin A; Deganutti G; Salmaso V; Sturlese M; Moro S
    ChemMedChem; 2018 Mar; 13(6):522-531. PubMed ID: 29193885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Pharmacophore into Membrane Molecular Dynamics Simulations to Improve Homology Modeling of G Protein-coupled Receptors with Ligand Selectivity: A2A Adenosine Receptor as an Example.
    Zeng L; Guan M; Jin H; Liu Z; Zhang L
    Chem Biol Drug Des; 2015 Dec; 86(6):1438-50. PubMed ID: 26072970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addressing free fatty acid receptor 1 (FFAR1) activation using supervised molecular dynamics.
    Atanasio S; Deganutti G; Reynolds CA
    J Comput Aided Mol Des; 2020 Nov; 34(11):1181-1193. PubMed ID: 32851580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peeking at G-protein-coupled receptors through the molecular dynamics keyhole.
    Deganutti G; Moro S; Reynolds CA
    Future Med Chem; 2019 Mar; 11(6):599-615. PubMed ID: 30888844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs.
    Plante A; Shore DM; Morra G; Khelashvili G; Weinstein H
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Conformational State Transitions of Class B GPCRs Using Molecular Dynamics.
    Liao C; May V; Li J
    Methods Mol Biol; 2019; 1947():3-19. PubMed ID: 30969408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metadynamics simulations of ligand binding to GPCRs.
    Ibrahim P; Clark T
    Curr Opin Struct Biol; 2019 Apr; 55():129-137. PubMed ID: 31100549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Trends and Applications of Molecular Modeling in GPCR⁻Ligand Recognition and Structure-Based Drug Design.
    Yuan X; Xu Y
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30036949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Could Adenosine Recognize its Receptors with a Stoichiometry Other than 1 : 1?
    Deganutti G; Salmaso V; Moro S
    Mol Inform; 2018 Aug; 37(8):e1800009. PubMed ID: 29673107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking.
    Langelaan DN; Reddy T; Banks AW; Dellaire G; Dupré DJ; Rainey JK
    Biochim Biophys Acta; 2013 Jun; 1828(6):1471-83. PubMed ID: 23438363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the RNA-Recognition Mechanism Using Supervised Molecular Dynamics (SuMD) Simulations: Toward a Rational Design for Ribonucleic-Targeting Molecules?
    Bissaro M; Sturlese M; Moro S
    Front Chem; 2020; 8():107. PubMed ID: 32175307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.