BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2701955)

  • 1. Foot strike and the properties of the human heel pad.
    Ker RF; Bennett MB; Alexander RM; Kester RC
    Proc Inst Mech Eng H; 1989; 203(4):191-6. PubMed ID: 2701955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogenetic changes in foot strike pattern and calcaneal loading during walking in young children.
    Zeininger A; Schmitt D; Jensen JL; Shapiro LJ
    Gait Posture; 2018 Jan; 59():18-22. PubMed ID: 28982055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical energy and effective foot mass during impact loading of walking and running.
    Chi KJ; Schmitt D
    J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo biomechanical behavior of the human heel pad during the stance phase of gait.
    Gefen A; Megido-Ravid M; Itzchak Y
    J Biomech; 2001 Dec; 34(12):1661-5. PubMed ID: 11716870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental estimation of energy absorption during heel strike in human barefoot walking.
    Baines PM; Schwab AL; van Soest AJ
    PLoS One; 2018; 13(6):e0197428. PubMed ID: 29953479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the quadriceps in controlling impulsive forces around heel strike.
    Jefferson RJ; Collins JJ; Whittle MW; Radin EL; O'Connor JJ
    Proc Inst Mech Eng H; 1990; 204(1):21-8. PubMed ID: 2353989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanical characteristics of the human heel pad during foot strike in running: an in vivo cineradiographic study.
    De Clercq D; Aerts P; Kunnen M
    J Biomech; 1994 Oct; 27(10):1213-22. PubMed ID: 7962009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of heel pad tissues mechanics at the heel strike in bare and shod conditions.
    Fontanella CG; Forestiero A; Carniel EL; Natali AN
    Med Eng Phys; 2013 Apr; 35(4):441-7. PubMed ID: 22789809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.
    Noe DA; Voto SJ; Hoffmann MS; Askew MJ; Gradisar IA
    J Biomed Eng; 1993 Jan; 15(1):23-6. PubMed ID: 8419676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot.
    Webber JT; Raichlen DA
    J Exp Biol; 2016 Dec; 219(Pt 23):3729-3737. PubMed ID: 27903628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The foot as a shock absorber.
    Salathé EP; Arangio GA; Salathé EP
    J Biomech; 1990; 23(7):655-9. PubMed ID: 2384481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force-deformation properties of the human heel pad during barefoot walking.
    Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A
    Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-conserving impact algorithm for the heel-strike phase of gait.
    Kaplan ML; Heegaard JH
    J Biomech; 2000 Jun; 33(6):771-5. PubMed ID: 10808000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of haemolytic responses in fore-foot and rear-foot distance runners.
    Caulfield S; McDonald KA; Dawson B; Stearne SM; Green BA; Rubenson J; Clemons TD; Peeling P
    J Sports Sci; 2016 Aug; 34(15):1485-90. PubMed ID: 26618486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is the foot striking pattern more important than barefoot or shod conditions in running?
    Shih Y; Lin KL; Shiang TY
    Gait Posture; 2013 Jul; 38(3):490-4. PubMed ID: 23507028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heel strike detection using split force-plate treadmill.
    Rouhani H; Abe MO; Nakazawa K; Popovic MR; Masani K
    Gait Posture; 2015 Mar; 41(3):863-6. PubMed ID: 25800003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient vibrations caused by heel strike.
    Smeathers JE
    Proc Inst Mech Eng H; 1989; 203(4):181-6. PubMed ID: 2701953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The oscillatory behavior of the CoM facilitates mechanical energy balance between push-off and heel strike.
    Kim S; Park S
    J Biomech; 2012 Jan; 45(2):326-33. PubMed ID: 22035641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.