These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27019610)

  • 1. Why GPS makes distances bigger than they are.
    Ranacher P; Brunauer R; Trutschnig W; Van der Spek S; Reich S
    Int J Geogr Inf Sci; 2016 Feb; 30(2):316-333. PubMed ID: 27019610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording fine-scale movement of ground beetles by two methods: Potentials and methodological pitfalls.
    Růžičková J; Elek Z
    Ecol Evol; 2021 Jul; 11(13):8562-8572. PubMed ID: 34257916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Improved Map-Matching Technique Based on the Fréchet Distance Approach for Pedestrian Navigation Services.
    Bang Y; Kim J; Yu K
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27782091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy and reliability of GPS devices for measurement of movement patterns in confined spaces for court-based sports.
    Duffield R; Reid M; Baker J; Spratford W
    J Sci Med Sport; 2010 Sep; 13(5):523-5. PubMed ID: 19853507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPS measurement error gives rise to spurious 180 degree turning angles and strong directional biases in animal movement data.
    Hurford A
    PLoS One; 2009 May; 4(5):e5632. PubMed ID: 19479067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical Distribution Analysis of Navigation Positioning System Errors-Issue of the Empirical Sample Size.
    Specht M
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Data Cleaning Method for Big Trace Data Using Movement Consistency.
    Yang X; Tang L; Zhang X; Li Q
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29522456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decision rules for determining terrestrial movement and the consequences for filtering high-resolution global positioning system tracks: a case study using the African lion (
    Gunner RM; Wilson RP; Holton MD; Hopkins P; Bell SH; Marks NJ; Bennett NC; Ferreira S; Govender D; Viljoen P; Bruns A; van Schalkwyk OL; Bertelsen MF; Duarte CM; van Rooyen MC; Tambling CJ; Göppert A; Diesel D; Scantlebury DM
    J R Soc Interface; 2022 Jan; 19(186):20210692. PubMed ID: 35042386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The validity and reliability of 5-Hz global positioning system units to measure team sport movement demands.
    Johnston RJ; Watsford ML; Pine MJ; Spurrs RW; Murphy AJ; Pruyn EC
    J Strength Cond Res; 2012 Mar; 26(3):758-65. PubMed ID: 22310508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Enhanced Error Model for EKF-Based Tightly-Coupled Integration of GPS and Land Vehicle's Motion Sensors.
    Karamat TB; Atia MM; Noureldin A
    Sensors (Basel); 2015 Sep; 15(9):24269-96. PubMed ID: 26402680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity and interunit reliability of 10 Hz and 15 Hz GPS units for assessing athlete movement demands.
    Johnston RJ; Watsford ML; Kelly SJ; Pine MJ; Spurrs RW
    J Strength Cond Res; 2014 Jun; 28(6):1649-55. PubMed ID: 24276300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping stream habitats with a global positioning system: accuracy, precision, and comparison with traditional methods.
    Dauwalter DC; Fisher WL; Belt KC
    Environ Manage; 2006 Feb; 37(2):271-80. PubMed ID: 16391970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.
    Cheng J; Chen D; Sun X; Wang T
    Sensors (Basel); 2015 Feb; 15(2):3575-92. PubMed ID: 25658391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat.
    de Weerd N; van Langevelde F; van Oeveren H; Nolet BA; Kölzsch A; Prins HH; de Boer WF
    PLoS One; 2015; 10(6):e0129030. PubMed ID: 26107643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method to improve autonomous GPS positioning for tractors.
    Gomez-Gil J; Alonso-Garcia S; Gómez-Gil FJ; Stombaugh T
    Sensors (Basel); 2011; 11(6):5630-44. PubMed ID: 22163917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity and reliability of GPS for measuring distance travelled in field-based team sports.
    Gray AJ; Jenkins D; Andrews MH; Taaffe DR; Glover ML
    J Sports Sci; 2010 Oct; 28(12):1319-25. PubMed ID: 20859825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent validity and test-retest reliability of a global positioning system (GPS) and timing gates to assess sprint performance variables.
    Waldron M; Worsfold P; Twist C; Lamb K
    J Sports Sci; 2011 Dec; 29(15):1613-9. PubMed ID: 22004326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effective approach to improving low-cost GPS positioning accuracy in real-time navigation.
    Islam MR; Kim JM
    ScientificWorldJournal; 2014; 2014():671494. PubMed ID: 25136679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The validity of a non-differential global positioning system for assessing player movement patterns in field hockey.
    MacLeod H; Morris J; Nevill A; Sunderland C
    J Sports Sci; 2009 Jan; 27(2):121-8. PubMed ID: 19058089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Trajectory Collaboration Based Map Matching Approach for Low-Sampling-Rate GPS Trajectories.
    Bian W; Cui G; Wang X
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32268569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.