These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27019713)

  • 1. Structural, optical and charge generation properties of chalcostibite and tetrahedrite copper antimony sulfide thin films prepared from metal xanthates.
    Rath T; MacLachlan AJ; Brown MD; Haque SA
    J Mater Chem A Mater; 2015 Dec; 3(47):24155-24162. PubMed ID: 27019713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable synthesis of Cu-Sb-S phases from reactive melts of metal xanthates and effect of cationic manipulation on structural and optical properties.
    Alqahtani T; Khan MD; Lewis DJ; Zhong XL; O'Brien P
    Sci Rep; 2021 Jan; 11(1):1887. PubMed ID: 33479247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of ternary copper antimony sulfide via solventless thermolysis or aerosol assisted chemical vapour deposition using metal dithiocarbamates.
    Makin F; Alam F; Buckingham MA; Lewis DJ
    Sci Rep; 2022 Apr; 12(1):5627. PubMed ID: 35379851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared absorbing Cu12Sb4S13 and Cu3SbS4 nanocrystals: synthesis, characterization, and photoelectrochemistry.
    van Embden J; Latham K; Duffy NW; Tachibana Y
    J Am Chem Soc; 2013 Aug; 135(31):11562-71. PubMed ID: 23876109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper antimony sulfide thin films for visible to near infrared photodetector applications.
    Vinayakumar V; Shaji S; Avellaneda D; Aguilar-Martínez JA; Krishnan B
    RSC Adv; 2018 Aug; 8(54):31055-31065. PubMed ID: 35548774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Temperature Atomic Layer Deposition of CuSbS
    Riha SC; Koegel AA; Emery JD; Pellin MJ; Martinson AB
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4667-4673. PubMed ID: 28117960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-Processable Cu
    Rath T; Marin-Beloqui JM; Bai X; Knall AC; Sigl M; Warchomicka FG; Griesser T; Amenitsch H; Haque SA
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41624-41633. PubMed ID: 37623297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mono-, few-, and multiple layers of copper antimony sulfide (CuSbS2): a ternary layered sulfide.
    Ramasamy K; Sims H; Butler WH; Gupta A
    J Am Chem Soc; 2014 Jan; 136(4):1587-98. PubMed ID: 24400989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.
    Suehiro S; Horita K; Yuasa M; Tanaka T; Fujita K; Ishiwata Y; Shimanoe K; Kida T
    Inorg Chem; 2015 Aug; 54(16):7840-5. PubMed ID: 26237216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal decomposition of solution processable metal xanthates on mesoporous titanium dioxide films: a new route to quantum-dot sensitised heterojunctions.
    Lutz T; MacLachlan A; Sudlow A; Nelson J; Hill MS; Molloy KC; Haque SA
    Phys Chem Chem Phys; 2012 Dec; 14(47):16192-6. PubMed ID: 23132265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield.
    Chen K; Zhou J; Chen W; Chen Q; Zhou P; Liu Y
    Nanoscale; 2016 Mar; 8(9):5146-52. PubMed ID: 26875832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Antimony Selenide Sensitized Solar Cells: Efficient Charge Photogeneration at spiro-OMeTAD/Sb2Se3/Metal Oxide Heterojunctions.
    Guijarro N; Lutz T; Lana-Villarreal T; O'Mahony F; Gómez R; Haque SA
    J Phys Chem Lett; 2012 May; 3(10):1351-6. PubMed ID: 26286782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin-Film Solar Cells Based on Selenized CuSbS
    Zhao M; Yu J; Fu L; Guan Y; Tang H; Li L; Cheng J
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Optical Characterization of Mechanochemically Synthesized CuSbS
    Esperto L; Figueira I; Mascarenhas J; Silva TP; Correia JB; Neves F
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CuSbS2: a promising semiconductor photo-absorber material for quantum dot sensitized solar cells.
    Liu Z; Huang J; Han J; Hong T; Zhang J; Liu Z
    Phys Chem Chem Phys; 2016 Jun; 18(25):16615-20. PubMed ID: 27297190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Solar Absorber Layers of Silver Bismuth Sulfide from Molecular Precursors.
    van Embden J; Della Gaspera E
    ACS Appl Mater Interfaces; 2019 May; 11(18):16674-16682. PubMed ID: 31025846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gram-Scale Production of Photothermally Active Tetrahedrite Nanoparticles for Solar-Driven Water Evaporation.
    Regulacio MD; Heng JZX; Toh Y; Tang KY; Lin M; Ye E
    Chem Asian J; 2021 Nov; 16(21):3326-3330. PubMed ID: 34427983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular precursor-mediated facile synthesis of photo-responsive stibnite Sb
    Thomas A; Karmakar G; Shah AY; Lokhande SV; Kulkarni AY; Tyagi A; Singh Chauhan R; Kumar NN; Singh AP
    Dalton Trans; 2022 Aug; 51(32):12181-12191. PubMed ID: 35876784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-layered nanoscale cellulose/CuInS
    Weißl M; Rath T; Sattelkow J; Plank H; Eyley S; Thielemans W; Trimmel G; Spirk S
    Carbohydr Polym; 2019 Jan; 203():219-227. PubMed ID: 30318207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of photoinduced self-exchange reactions at molecule-semiconductor interfaces by transient polarization spectroscopy: lateral intermolecular energy and hole transfer across sensitized TiO2 thin films.
    Ardo S; Meyer GJ
    J Am Chem Soc; 2011 Oct; 133(39):15384-96. PubMed ID: 21861499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.