BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27020155)

  • 1. Mating type markers reveal high levels of heterothallism in Leptographium sensu lato.
    Duong TA; de Beer ZW; Wingfield BD; Wingfield MJ
    Fungal Biol; 2016 Apr; 120(4):538-546. PubMed ID: 27020155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the mating-type genes in Leptographium procerum and Leptographium profanum.
    Duong TA; de Beer ZW; Wingfield BD; Wingfield MJ
    Fungal Biol; 2013 Jun; 117(6):411-21. PubMed ID: 23809651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taxonomy and phylogeny of the Leptographium procerum complex, including Leptographium sinense sp. nov. and Leptographium longiconidiophorum sp. nov.
    Yin M; Duong TA; Wingfield MJ; Zhou X; de Beer ZW
    Antonie Van Leeuwenhoek; 2015 Feb; 107(2):547-63. PubMed ID: 25510728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ophiostomatoid fungi including two new fungal species associated with pine root-feeding beetles in northern Spain.
    Romón P; De Beer ZW; Fernández M; Diez J; Wingfield BD; Wingfield MJ
    Antonie Van Leeuwenhoek; 2014 Dec; 106(6):1167-84. PubMed ID: 25253585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two new Leptographium spp. reveal an emerging complex of hardwood-infecting species in the Ophiostomatales.
    Jankowiak R; Strzałka B; Bilański P; Linnakoski R; Aas T; Solheim H; Groszek M; de Beer ZW
    Antonie Van Leeuwenhoek; 2017 Dec; 110(12):1537-1553. PubMed ID: 28687978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generic boundaries in the
    de Beer ZW; Procter M; Wingfield MJ; Marincowitz S; Duong TA
    Stud Mycol; 2022 Jul; 101():57-120. PubMed ID: 36059894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three new Leptographium spp. (Ophiostomatales) infecting hardwood trees in Norway and Poland.
    Jankowiak R; Ostafińska A; Aas T; Solheim H; Bilański P; Linnakoski R; Hausner G
    Antonie Van Leeuwenhoek; 2018 Dec; 111(12):2323-2347. PubMed ID: 29980901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeny and taxonomy of species in the Grosmannia serpens complex.
    Duong TA; de Beer ZW; Wingfield BD; Wingfield MJ
    Mycologia; 2012; 104(3):715-32. PubMed ID: 22123658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitogenomes of
    Mukhopadhyay J; Wai A; Hausner G
    Front Microbiol; 2023; 14():1240407. PubMed ID: 37637121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grosmannia and Leptographium spp. associated with conifer-infesting bark beetles in Finland and Russia, including Leptographium taigense sp. nov.
    Linnakoski R; de Beer ZW; Duong TA; Niemelä P; Pappinen A; Wingfield MJ
    Antonie Van Leeuwenhoek; 2012 Aug; 102(2):375-99. PubMed ID: 22580615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic re-evaluation of the Grosmannia penicillata complex (Ascomycota, Ophiostomatales), with the description of five new species from China and USA.
    Yin M; Wingfield MJ; Zhou X; de Beer ZW
    Fungal Biol; 2020 Feb; 124(2):110-124. PubMed ID: 32008752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leptographium tereforme sp. nov. and other Ophiostomatales isolated from the root-feeding bark beetle Hylurgus ligniperda in California.
    Kim S; Harrington TC; Lee JC; Seybold SJ
    Mycologia; 2011; 103(1):152-63. PubMed ID: 20943533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics of the pine pathogens and beetle symbionts in the genus Grosmannia.
    Massoumi Alamouti S; Haridas S; Feau N; Robertson G; Bohlmann J; Breuil C
    Mol Biol Evol; 2014 Jun; 31(6):1454-74. PubMed ID: 24627033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target-specific PCR primers can detect and differentiate ophiostomatoid fungi from microbial communities associated with the mountain pine beetle Dendroctonus ponderosae.
    Khadempour L; Massoumi Alamouti S; Hamelin R; Bohlmann J; Breuil C
    Fungal Biol; 2010 Oct; 114(10):825-33. PubMed ID: 20943192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic basis for high population diversity in Protea-associated Knoxdaviesia.
    Aylward J; Steenkamp ET; Dreyer LL; Roets F; Wingfield MJ; Wingfield BD
    Fungal Genet Biol; 2016 Nov; 96():47-57. PubMed ID: 27720822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fruiting Body Formation in Volvariella volvacea Can Occur Independently of Its MAT-A-Controlled Bipolar Mating System, Enabling Homothallic and Heterothallic Life Cycles.
    Chen B; van Peer AF; Yan J; Li X; Xie B; Miao J; Huang Q; Zhang L; Wang W; Fu J; Zhang X; Zhang X; Hu F; Kong Q; Sun X; Zou F; Zhang H; Li S; Xie B
    G3 (Bethesda); 2016 Jul; 6(7):2135-46. PubMed ID: 27194800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the mating types and mating strategies in prominent genera in the Botryosphaeriaceae.
    Nagel JH; Wingfield MJ; Slippers B
    Fungal Genet Biol; 2018 May; 114():24-33. PubMed ID: 29530630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altering sexual reproductive mode by interspecific exchange of MAT loci.
    Lu SW; Yun SH; Lee T; Turgeon BG
    Fungal Genet Biol; 2011 Jul; 48(7):714-24. PubMed ID: 21514396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain.
    Romón P; Zhou X; Iturrondobeitia JC; Wingfield MJ; Goldarazena A
    Can J Microbiol; 2007 Jun; 53(6):756-67. PubMed ID: 17668036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts.
    Ojeda Alayon DI; Tsui CK; Feau N; Capron A; Dhillon B; Zhang Y; Massoumi Alamouti S; Boone CK; Carroll AL; Cooke JE; Roe AD; Sperling FA; Hamelin RC
    Mol Ecol; 2017 Apr; 26(7):2077-2091. PubMed ID: 28231417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.