These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 27020166)
1. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into "Redox mediator-Microbe-Iron oxide" Interaction Process. Zhu W; Shi M; Yu D; Liu C; Huang T; Wu F Sci Rep; 2016 Mar; 6():23718. PubMed ID: 27020166 [TBL] [Abstract][Full Text] [Related]
2. Incorporation of Shewanella oneidensis MR-1 and goethite stimulates anaerobic Sb(III) oxidation by the generation of labile Fe(III) intermediate. Sheng H; Liu W; Wang Y; Ye L; Jing C Environ Pollut; 2024 Jun; 351():124008. PubMed ID: 38641038 [TBL] [Abstract][Full Text] [Related]
3. The characteristics and two-step reaction model of p-nitroacetophenone biodegradation mediated by Shewanella decolorationis S12 and electron shuttle in the presence/absence of goethite. Zhu W; Wang R; Huang T; Wu F Environ Technol; 2014; 35(21-24):3116-23. PubMed ID: 25244139 [TBL] [Abstract][Full Text] [Related]
4. Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200. Cooper DC; Picardal FW; Schimmelmann A; Coby AJ Appl Environ Microbiol; 2003 Jun; 69(6):3517-25. PubMed ID: 12788758 [TBL] [Abstract][Full Text] [Related]
5. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1. Li C; Yi X; Dang Z; Yu H; Zeng T; Wei C; Feng C Chemosphere; 2016 Feb; 144():2065-72. PubMed ID: 26583288 [TBL] [Abstract][Full Text] [Related]
6. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17. Li X; Liu L; Liu T; Yuan T; Zhang W; Li F; Zhou S; Li Y Chemosphere; 2013 Jun; 92(2):218-24. PubMed ID: 23461838 [TBL] [Abstract][Full Text] [Related]
7. Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32. Huang JH; Voegelin A; Pombo SA; Lazzaro A; Zeyer J; Kretzschmar R Environ Sci Technol; 2011 Sep; 45(18):7701-9. PubMed ID: 21819067 [TBL] [Abstract][Full Text] [Related]
8. Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate. Yu L; Wang S; Tang QW; Cao MY; Li J; Yuan K; Wang P; Li WW Appl Microbiol Biotechnol; 2016 May; 100(10):4617-25. PubMed ID: 26762391 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium. Luan F; Gorski CA; Burgos WD Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199 [TBL] [Abstract][Full Text] [Related]
10. Enhanced biotransformation of DDTs by an iron- and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS). Cao F; Liu TX; Wu CY; Li FB; Li XM; Yu HY; Tong H; Chen MJ J Agric Food Chem; 2012 Nov; 60(45):11238-44. PubMed ID: 23095105 [TBL] [Abstract][Full Text] [Related]
11. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates. Shimizu M; Zhou J; Schröder C; Obst M; Kappler A; Borch T Environ Sci Technol; 2013; 47(23):13375-84. PubMed ID: 24219167 [TBL] [Abstract][Full Text] [Related]
12. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Li FB; Li XM; Zhou SG; Zhuang L; Cao F; Huang DY; Xu W; Liu TX; Feng CH Environ Pollut; 2010 May; 158(5):1733-40. PubMed ID: 20031285 [TBL] [Abstract][Full Text] [Related]
13. Influence of sediment components on the immobilization of Zn during microbial Fe-(hydr)oxide reduction. Coby AJ; Picardal FW Environ Sci Technol; 2006 Jun; 40(12):3813-8. PubMed ID: 16830547 [TBL] [Abstract][Full Text] [Related]
14. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation. Orsetti S; Laskov C; Haderlein SB Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388 [TBL] [Abstract][Full Text] [Related]
15. Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Glasauer S; Langley S; Beveridge TJ Science; 2002 Jan; 295(5552):117-9. PubMed ID: 11778045 [TBL] [Abstract][Full Text] [Related]
16. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments. Cooper DC; Picardal FF; Coby AJ Environ Sci Technol; 2006 Mar; 40(6):1884-91. PubMed ID: 16570612 [TBL] [Abstract][Full Text] [Related]
17. Controls on Fe(II)-activated trace element release from goethite and hematite. Frierdich AJ; Catalano JG Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654 [TBL] [Abstract][Full Text] [Related]
18. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions. Jin X; Wang F; Gu C; Yang X; Kengara FO; Bian Y; Song Y; Jiang X Chemosphere; 2015 Nov; 138():18-24. PubMed ID: 26025430 [TBL] [Abstract][Full Text] [Related]
19. Quantifying constraints imposed by calcium and iron on bacterial reduction of uranium(VI). Stewart BD; Neiss J; Fendorf S J Environ Qual; 2007; 36(2):363-72. PubMed ID: 17255623 [TBL] [Abstract][Full Text] [Related]
20. Kinetic analysis of the bacterial reduction of goethite. Liu C; Kota S; Zachara JM; Fredrickson JK; Brinkman CK Environ Sci Technol; 2001 Jun; 35(12):2482-90. PubMed ID: 11432552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]