These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27020465)

  • 1. A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors.
    Lim E; Jo C; Lee J
    Nanoscale; 2016 Apr; 8(15):7827-33. PubMed ID: 27020465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors.
    Cherusseri J; Sambath Kumar K; Choudhary N; Nagaiah N; Jung Y; Roy T; Thomas J
    Nanotechnology; 2019 May; 30(20):202001. PubMed ID: 30754027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes.
    Yang N; Yu S; Zhang W; Cheng HM; Simon P; Jiang X
    Adv Mater; 2022 Aug; 34(34):e2202380. PubMed ID: 35413141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured Electrode Materials for Electrochemical Capacitor Applications.
    Choi H; Yoon H
    Nanomaterials (Basel); 2015 Jun; 5(2):906-936. PubMed ID: 28347044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of molecular modelling of electric double layer capacitors.
    Burt R; Birkett G; Zhao XS
    Phys Chem Chem Phys; 2014 Apr; 16(14):6519-38. PubMed ID: 24589998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical capacitors: mechanism, materials, systems, characterization and applications.
    Wang Y; Song Y; Xia Y
    Chem Soc Rev; 2016 Oct; 45(21):5925-5950. PubMed ID: 27545205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of the applications of graphene-based materials in supercapacitors.
    Huang Y; Liang J; Chen Y
    Small; 2012 Jun; 8(12):1805-34. PubMed ID: 22514114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.
    Wang L; Hu X
    Chem Asian J; 2018 Jun; 13(12):1518-1529. PubMed ID: 29667345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review.
    Ike IS; Sigalas I; Iyuke S
    Phys Chem Chem Phys; 2016 Jan; 18(2):661-80. PubMed ID: 26659405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping.
    Chi YW; Hu CC; Shen HH; Huang KP
    Nano Lett; 2016 Sep; 16(9):5719-27. PubMed ID: 27548051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercapatteries as Hybrid Electrochemical Energy Storage Devices: Current Status and Future Prospects.
    Rudra S; Seo HW; Sarker S; Kim DM
    Molecules; 2024 Jan; 29(1):. PubMed ID: 38202828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors.
    Murali S; Dreyer DR; Valle-Vigón P; Stoller MD; Zhu Y; Morales C; Fuertes AB; Bielawski CW; Ruoff RS
    Phys Chem Chem Phys; 2011 Feb; 13(7):2652-5. PubMed ID: 21157588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
    Salunkhe RR; Lee YH; Chang KH; Li JM; Simon P; Tang J; Torad NL; Hu CC; Yamauchi Y
    Chemistry; 2014 Oct; 20(43):13838-52. PubMed ID: 25251360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.
    Huang J; Sumpter BG; Meunier V
    Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Studies on the Quantum Capacitance of Two-Dimensional Electrode Materials for Supercapacitors.
    Lin J; Yuan Y; Wang M; Yang X; Yang G
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Insights into Materials and Interfaces for Capacitive Energy Storage.
    Zhan C; Lian C; Zhang Y; Thompson MW; Xie Y; Wu J; Kent PRC; Cummings PT; Jiang DE; Wesolowski DJ
    Adv Sci (Weinh); 2017 Jul; 4(7):1700059. PubMed ID: 28725531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.