These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27020465)

  • 21. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance.
    He S; Chen W
    Nanoscale; 2015 Apr; 7(16):6957-90. PubMed ID: 25522064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the configuration of supercapacitors for maximizing electrochemical performance.
    Zhang J; Zhao XS
    ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review of electrolyte materials and compositions for electrochemical supercapacitors.
    Zhong C; Deng Y; Hu W; Qiao J; Zhang L; Zhang J
    Chem Soc Rev; 2015 Nov; 44(21):7484-539. PubMed ID: 26050756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Progress in Carbonaceous and Redox-Active Nanoarchitectures for Hybrid Supercapacitors: Performance Evaluation, Challenges, and Future Prospects.
    Shah SS; Aziz MA; Yamani ZH
    Chem Rec; 2022 Jul; 22(7):e202200018. PubMed ID: 35426239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of electrolyte molecules with carbon materials of well-defined porosity: characterization by solid-state NMR spectroscopy.
    Borchardt L; Oschatz M; Paasch S; Kaskel S; Brunner E
    Phys Chem Chem Phys; 2013 Sep; 15(36):15177-84. PubMed ID: 23925570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.
    Mousavi MP; Wilson BE; Kashefolgheta S; Anderson EL; He S; Bühlmann P; Stein A
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3396-406. PubMed ID: 26771378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of different electrolytes on the electrochemical and dynamic behavior of electric double layer capacitors based on a porous silicon carbide electrode.
    Kim M; Oh I; Kim J
    Phys Chem Chem Phys; 2015 Jul; 17(25):16367-74. PubMed ID: 26051533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoconfined Space: Revisiting the Charge Storage Mechanism of Electric Double Layer Capacitors.
    Tan J; Li Z; Ye M; Shen J
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37259-37269. PubMed ID: 35951420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultracompressible, high-rate supercapacitors from graphene-coated carbon nanotube aerogels.
    Wilson E; Islam MF
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5612-8. PubMed ID: 25699583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast and stable redox reactions of MnO₂/CNT hybrid electrodes for dynamically stretchable pseudocapacitors.
    Gu T; Wei B
    Nanoscale; 2015 Jul; 7(27):11626-32. PubMed ID: 26090617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An overview of carbon materials for flexible electrochemical capacitors.
    He Y; Chen W; Gao C; Zhou J; Li X; Xie E
    Nanoscale; 2013 Oct; 5(19):8799-820. PubMed ID: 23934430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unique Core-Shell Nanorod Arrays with Polyaniline Deposited into Mesoporous NiCo2O4 Support for High-Performance Supercapacitor Electrodes.
    Jabeen N; Xia Q; Yang M; Xia H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6093-100. PubMed ID: 26889785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface Roughness: A Crucial Factor To Robust Electric Double Layer Capacitors.
    Wei J; Li Y; Dai D; Zhang F; Zou H; Yang X; Ji Y; Li B; Wei X
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5786-5792. PubMed ID: 31971361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications.
    Fang B; Kim JH; Kim MS; Yu JS
    Acc Chem Res; 2013 Jul; 46(7):1397-406. PubMed ID: 23270494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mesoporous Nanoarchitectures for Electrochemical Energy Conversion and Storage.
    Yan Y; Chen G; She P; Zhong G; Yan W; Guan BY; Yamauchi Y
    Adv Mater; 2020 Nov; 32(44):e2004654. PubMed ID: 32964570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond.
    Dou Q; Wu N; Yuan H; Shin KH; Tang Y; Mitlin D; Park HS
    Chem Soc Rev; 2021 Jun; 50(12):6734-6789. PubMed ID: 33955977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanopatterning of Electrode Surfaces as a Potential Route to Improve the Energy Density of Electric Double-Layer Capacitors: Insight from Molecular Simulations.
    Xing L; Vatamanu J; Smith GD; Bedrov D
    J Phys Chem Lett; 2012 May; 3(9):1124-9. PubMed ID: 26288046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diamond Supercapacitors: Towards Durable, Safe, and Biocompatible Aqueous-Based Energy Storage.
    Chambers A; Prawer S; Ahnood A; Zhan H
    Front Chem; 2022; 10():924127. PubMed ID: 35668830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.
    Li J; Liu K; Gao X; Yao B; Huo K; Cheng Y; Cheng X; Chen D; Wang B; Sun W; Ding D; Liu M; Huang L
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24622-8. PubMed ID: 26477268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.