These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27020924)

  • 1. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer.
    Wolf JC; Etter R; Schaer M; Siegenthaler P; Zenobi R
    J Am Soc Mass Spectrom; 2016 Jul; 27(7):1197-202. PubMed ID: 27020924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct quantification of chemical warfare agents and related compounds at low ppt levels: comparing active capillary dielectric barrier discharge plasma ionization and secondary electrospray ionization mass spectrometry.
    Wolf JC; Schaer M; Siegenthaler P; Zenobi R
    Anal Chem; 2015 Jan; 87(1):723-9. PubMed ID: 25427190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.
    Steiner WE; Clowers BH; Haigh PE; Hill HH
    Anal Chem; 2003 Nov; 75(22):6068-76. PubMed ID: 14615983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct gas-phase detection of nerve and blister warfare agents utilizing active capillary plasma ionization mass spectrometry.
    Wolf JC; Schaer M; P Siegenthaler P; Zenobi R
    Eur J Mass Spectrom (Chichester); 2015; 21(3):305-12. PubMed ID: 26307710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronized discharge ionization for analysis of volatile organic compounds using a hand-held ion trap mass spectrometer.
    Chen TC; Ouyang Z
    Anal Chem; 2013 Feb; 85(3):1767-72. PubMed ID: 23256567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.
    Smith JN; Noll RJ; Cooks RG
    Rapid Commun Mass Spectrom; 2011 May; 25(10):1437-44. PubMed ID: 21504010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a portable mass spectrometer characterized by discontinuous sample gas introduction, a low-pressure dielectric barrier discharge ionization source, and a vacuumed headspace technique.
    Kumano S; Sugiyama M; Yamada M; Nishimura K; Hasegawa H; Morokuma H; Inoue H; Hashimoto Y
    Anal Chem; 2013 May; 85(10):5033-9. PubMed ID: 23577896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents.
    Graichen AM; Vachet RW
    J Am Soc Mass Spectrom; 2013 Jun; 24(6):917-25. PubMed ID: 23532782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticles-enhanced ion-transmission mass spectrometry for highly sensitive detection of chemical warfare agent simulants.
    Zhang L; Zhao X; Cheng H; Kong J; Zhao Y; Zhu X; Zhang S; Zhang X
    Talanta; 2018 Dec; 190():403-409. PubMed ID: 30172526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry.
    McKenna J; Dhummakupt ES; Connell T; Demond PS; Miller DB; Michael Nilles J; Manicke NE; Glaros T
    Analyst; 2017 May; 142(9):1442-1451. PubMed ID: 28338135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a gas-cylinder-free plasma desorption/ionization system for on-site detection of chemical warfare agents.
    Iwai T; Kakegawa K; Aida M; Nagashima H; Nagoya T; Kanamori-Kataoka M; Miyahara H; Seto Y; Okino A
    Anal Chem; 2015 Jun; 87(11):5707-15. PubMed ID: 25958918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambient mass spectrometry with a handheld mass spectrometer at high pressure.
    Keil A; Talaty N; Janfelt C; Noll RJ; Gao L; Ouyang Z; Cooks RG
    Anal Chem; 2007 Oct; 79(20):7734-9. PubMed ID: 17867653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trace analysis of organics in air by corona discharge atmospheric pressure ionization using an electrospray ionization interface.
    Nikolaev E; Riter LS; Laughlin BC; Handberg E; Cooks RG
    Eur J Mass Spectrom (Chichester); 2004; 10(2):197-204. PubMed ID: 15103096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface.
    Gao L; Cooks RG; Ouyang Z
    Anal Chem; 2008 Jun; 80(11):4026-32. PubMed ID: 18461971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and characterization of a multisource hand-held tandem mass spectrometer.
    Gao L; Sugiarto A; Harper JD; Cooks RG; Ouyang Z
    Anal Chem; 2008 Oct; 80(19):7198-205. PubMed ID: 18754674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry [IM(tof)MS].
    Steiner WE; Harden CS; Hong F; Klopsch SJ; Hill HH; McHugh VM
    J Am Soc Mass Spectrom; 2006 Feb; 17(2):241-5. PubMed ID: 16413205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance.
    Hendricks PI; Dalgleish JK; Shelley JT; Kirleis MA; McNicholas MT; Li L; Chen TC; Chen CH; Duncan JS; Boudreau F; Noll RJ; Denton JP; Roach TA; Ouyang Z; Cooks RG
    Anal Chem; 2014 Mar; 86(6):2900-8. PubMed ID: 24521448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid,
    Brown HM; McDaniel TJ; Doppalapudi KR; Mulligan CC; Fedick PW
    Analyst; 2021 May; 146(10):3127-3136. PubMed ID: 33999086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a differential mobility spectrometer/miniature mass spectrometer system.
    Tadjimukhamedov FK; Jackson AU; Nazarov EG; Ouyang Z; Cooks RG
    J Am Soc Mass Spectrom; 2010 Sep; 21(9):1477-81. PubMed ID: 20619673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.