BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27020944)

  • 1. Fabrication of nonwoven fabrics consisting of gelatin nanofibers cross-linked by glutaraldehyde or N-acetyl-d-glucosamine by aqueous method.
    Furuike T; Chaochai T; Okubo T; Mori T; Tamura H
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1530-1538. PubMed ID: 27020944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of three-dimensional nanofibrous gelatin scaffolds using one-step crosslink technique.
    Teng F; Ding H; Huang Y; Wang J
    J Biomater Sci Polym Ed; 2018 Oct; 29(15):1859-1875. PubMed ID: 30132379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of gum arabic to improve the fabrication of chitosan-gelatin-based nanofibers for tissue engineering.
    Tsai RY; Kuo TY; Hung SC; Lin CM; Hsien TY; Wang DM; Hsieh HJ
    Carbohydr Polym; 2015 Jan; 115():525-32. PubMed ID: 25439928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds.
    Qian YF; Zhang KH; Chen F; Ke QF; Mo XM
    J Biomater Sci Polym Ed; 2011; 22(8):1099-113. PubMed ID: 20615315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of electrospun biopolyester/gelatin nanofibers.
    Ulker Turan C; Guvenilir Y
    J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1478-1487. PubMed ID: 33527679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun chitosan-gelatin nanofiberous scaffold: fabrication and in vitro evaluation.
    Jafari J; Emami SH; Samadikuchaksaraei A; Bahar MA; Gorjipour F
    Biomed Mater Eng; 2011; 21(2):99-112. PubMed ID: 21654066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning.
    Kwak HW; Shin M; Lee JY; Yun H; Song DW; Yang Y; Shin BS; Park YH; Lee KH
    Int J Biol Macromol; 2017 Sep; 102():1092-1103. PubMed ID: 28455252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose.
    Jalaja K; James NR
    Int J Biol Macromol; 2015 Feb; 73():270-8. PubMed ID: 25478965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of electrospun in-situ cross-linked gelatin-graphite oxide nanofibers.
    Zhan J; Morsi Y; Ei-Hamshary H; Al-Deyab SS; Mo X
    J Biomater Sci Polym Ed; 2016; 27(5):385-402. PubMed ID: 26733331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An innovative co-axial system to electrospin in situ crosslinked gelatin nanofibers.
    Gualandi C; Torricelli P; Panzavolta S; Pagani S; Focarete ML; Bigi A
    Biomed Mater; 2016 Mar; 11(2):025007. PubMed ID: 26987305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of electrospun core-shell structured gelatin-chitosan nanofibers for biomedical applications.
    Jalaja K; Naskar D; Kundu SC; James NR
    Carbohydr Polym; 2016 Jan; 136():1098-107. PubMed ID: 26572452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of FGF-2 immobilized electrospun gelatin nanofibers for tissue engineering.
    Lee H; Lim S; Birajdar MS; Lee SH; Park H
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1559-1566. PubMed ID: 27426702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of native type I collagen on polypropylene fabrics as a substrate for HepG2 cell culture.
    Peng G; Li S; Peng Q; Li Y; Weng J; Jia Z; Kang J; Lei X; Zhang G; Gao Y
    J Biomater Appl; 2017 Jul; 32(1):93-103. PubMed ID: 28504559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water.
    Panzavolta S; Gioffrè M; Focarete ML; Gualandi C; Foroni L; Bigi A
    Acta Biomater; 2011 Apr; 7(4):1702-9. PubMed ID: 21095244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of morphological, mechanical and biological properties of cellulose nanocrystal reinforced electrospun gelatin nanofibers.
    Hivechi A; Hajir Bahrami S; Siegel RA
    Int J Biol Macromol; 2019 Mar; 124():411-417. PubMed ID: 30476513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications.
    Gungor-Ozkerim PS; Balkan T; Kose GT; Sarac AS; Kok FN
    J Biomed Mater Res A; 2014 Jun; 102(6):1897-908. PubMed ID: 23852885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation.
    Ma Z; He W; Yong T; Ramakrishna S
    Tissue Eng; 2005; 11(7-8):1149-58. PubMed ID: 16144451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application.
    Zhang K; Qian Y; Wang H; Fan L; Huang C; Yin A; Mo X
    J Biomed Mater Res A; 2010 Dec; 95(3):870-81. PubMed ID: 20824649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering.
    Binulal NS; Natarajan A; Menon D; Bhaskaran VK; Mony U; Nair SV
    J Biomater Sci Polym Ed; 2014; 25(4):325-40. PubMed ID: 24274102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials.
    Chou SF; Luo LJ; Lai JY; Ma DH
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1145-1155. PubMed ID: 27987671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.