These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27020944)

  • 41. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold.
    Zulkifli FH; Jahir Hussain FS; Abdull Rasad MS; Mohd Yusoff M
    J Biomater Appl; 2015 Feb; 29(7):1014-27. PubMed ID: 25186524
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Solution Blow Spinning of Food-Grade Gelatin Nanofibers.
    Liu F; Avena-Bustillos RJ; Bilbao-Sainz C; Woods R; Chiou BS; Wood D; Williams T; Yokoyama W; Glenn GM; McHugh TH; Zhong F
    J Food Sci; 2017 Jun; 82(6):1402-1411. PubMed ID: 28471491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Failure mechanisms in fibrous scaffolds.
    Koh CT; Strange DG; Tonsomboon K; Oyen ML
    Acta Biomater; 2013 Jul; 9(7):7326-34. PubMed ID: 23470550
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mineralization of electrospun gelatin/CaCO
    Elsayed NA; Zada S; Allam NK
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():655-664. PubMed ID: 30948102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers.
    Alvarez Perez MA; Guarino V; Cirillo V; Ambrosio L
    J Biomed Mater Res A; 2012 Nov; 100(11):3008-19. PubMed ID: 22700476
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro release of lysozyme from gelatin microspheres: effect of cross-linking agents and thermoreversible gel as suspending medium.
    Hiwale P; Lampis S; Conti G; Caddeo C; Murgia S; Fadda AM; Monduzzi M
    Biomacromolecules; 2011 Sep; 12(9):3186-93. PubMed ID: 21809827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking.
    Bigi A; Cojazzi G; Panzavolta S; Rubini K; Roveri N
    Biomaterials; 2001 Apr; 22(8):763-8. PubMed ID: 11246944
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M; Lee D; Shin S; Hyun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication, Structural Characteristics, and Properties of Sericin-Coated Wool Nonwoven Fabrics.
    Lee HG; Jang MJ; Um IC
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834199
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability.
    Sisson K; Zhang C; Farach-Carson MC; Chase DB; Rabolt JF
    Biomacromolecules; 2009 Jul; 10(7):1675-80. PubMed ID: 19456101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physicochemical properties of collagen solutions cross-linked by glutaraldehyde.
    Tian Z; Li C; Duan L; Li G
    Connect Tissue Res; 2014 Jun; 55(3):239-47. PubMed ID: 24564765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Myotube formation on gelatin nanofibers - multi-walled carbon nanotubes hybrid scaffolds.
    Ostrovidov S; Shi X; Zhang L; Liang X; Kim SB; Fujie T; Ramalingam M; Chen M; Nakajima K; Al-Hazmi F; Bae H; Memic A; Khademhosseini A
    Biomaterials; 2014 Aug; 35(24):6268-77. PubMed ID: 24831971
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controlling the Release of Proteins from Therapeutic Nanofibers: The Effect of Fabrication Modalities on Biocompatibility and Antimicrobial Activity of Lysozyme.
    Seif S; Planz V; Windbergs M
    Planta Med; 2017 Mar; 83(5):445-452. PubMed ID: 27352386
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds.
    Jiang Q; Reddy N; Yang Y
    Acta Biomater; 2010 Oct; 6(10):4042-51. PubMed ID: 20438870
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use.
    Lai JY
    J Mater Sci Mater Med; 2010 Jun; 21(6):1899-911. PubMed ID: 20238149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications.
    Ramier J; Bouderlique T; Stoilova O; Manolova N; Rashkov I; Langlois V; Renard E; Albanese P; Grande D
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():161-9. PubMed ID: 24656364
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrospinning of Biosyn(®)-based tubular conduits: structural, morphological, and mechanical characterizations.
    Thomas V; Donahoe T; Nyairo E; Dean DR; Vohra YK
    Acta Biomater; 2011 May; 7(5):2070-9. PubMed ID: 21232639
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds.
    Jeong SI; Lee AY; Lee YM; Shin H
    J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polysaccharide nanofibers with variable compliance for directing cell fate.
    Jiang X; Nai MH; Lim CT; Le Visage C; Chan JK; Chew SY
    J Biomed Mater Res A; 2015 Mar; 103(3):959-68. PubMed ID: 24853353
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Studies on a novel gelatin sponge: preparation and characterization of cross-linked gelatin scaffolds using 2-chloro-1-methylpyridinium iodide as a zero-length cross-linker.
    Yeh MK; Liang YM; Hu CS; Cheng KM; Hung YW; Young JJ; Hong PD
    J Biomater Sci Polym Ed; 2012; 23(7):973-90. PubMed ID: 21549037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.