These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27021053)

  • 1. Unravelling Linkages between Plant Community Composition and the Pathogen-Suppressive Potential of Soils.
    Latz E; Eisenhauer N; Rall BC; Scheu S; Jousset A
    Sci Rep; 2016 Mar; 6():23584. PubMed ID: 27021053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitin- and Keratin-Rich Soil Amendments Suppress Rhizoctonia solani Disease via Changes to the Soil Microbial Community.
    Andreo-Jimenez B; Schilder MT; Nijhuis EH; Te Beest DE; Bloem J; Visser JHM; van Os G; Brolsma K; de Boer W; Postma J
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33771785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression.
    van der Voort M; Kempenaar M; van Driel M; Raaijmakers JM; Mendes R
    Ecol Lett; 2016 Apr; 19(4):375-82. PubMed ID: 26833547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using
    Hayden HL; Rochfort SJ; Ezernieks V; Savin KW; Mele PM
    Sci Total Environ; 2019 Feb; 651(Pt 1):1627-1638. PubMed ID: 30360288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial populations responsible for specific soil suppressiveness to plant pathogens.
    Weller DM; Raaijmakers JM; Gardener BB; Thomashow LS
    Annu Rev Phytopathol; 2002; 40():309-48. PubMed ID: 12147763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Term Nutrient Enrichment of an Oligotroph-Dominated Wetland Increases Bacterial Diversity in Bulk Soils and Plant Rhizospheres.
    Bledsoe RB; Goodwillie C; Peralta AL
    mSphere; 2020 May; 5(3):. PubMed ID: 32434837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal invasion of the rhizosphere microbiome.
    Chapelle E; Mendes R; Bakker PA; Raaijmakers JM
    ISME J; 2016 Jan; 10(1):265-8. PubMed ID: 26023875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of natural soil suppressiveness to soilborne diseases.
    Mazzola M
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):557-64. PubMed ID: 12448751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizosphere community selection reveals bacteria associated with reduced root disease.
    Yin C; Casa Vargas JM; Schlatter DC; Hagerty CH; Hulbert SH; Paulitz TC
    Microbiome; 2021 Apr; 9(1):86. PubMed ID: 33836842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens.
    van Elsas JD; Garbeva P; Salles J
    Biodegradation; 2002; 13(1):29-40. PubMed ID: 12222952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhizosphere ecology and phytoprotection in soils naturally suppressive to Thielaviopsis black root rot of tobacco.
    Almario J; Muller D; Défago G; Moënne-Loccoz Y
    Environ Microbiol; 2014 Jul; 16(7):1949-60. PubMed ID: 24650207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the Synergies of Reductive Soil Disinfestation Combined with Biochar and Antagonistic Microbial Inoculation in Cucumber Fusarium Wilt Suppression Through Rhizosphere Microbiota Structure.
    Ali A; Elrys AS; Liu L; Xia Q; Wang B; Li Y; Dan X; Iqbal M; Zhao J; Huang X; Cai Z
    Microb Ecol; 2023 Apr; 85(3):980-997. PubMed ID: 35948832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the rhizosphere microbiome for disease-suppressive bacteria.
    Mendes R; Kruijt M; de Bruijn I; Dekkers E; van der Voort M; Schneider JH; Piceno YM; DeSantis TZ; Andersen GL; Bakker PA; Raaijmakers JM
    Science; 2011 May; 332(6033):1097-100. PubMed ID: 21551032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of the rhizosphere effect and plant species on organic carbon mineralization rates and pathways, and bacterial community composition in a tidal marsh.
    Liu Y; Luo M; Ye R; Huang J; Xiao L; Hu Q; Zhu A; Tong C
    FEMS Microbiol Ecol; 2019 Sep; 95(9):. PubMed ID: 31344237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disease Suppressive Soils: New Insights from the Soil Microbiome.
    Schlatter D; Kinkel L; Thomashow L; Weller D; Paulitz T
    Phytopathology; 2017 Nov; 107(11):1284-1297. PubMed ID: 28650266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastic mulch film residues in agriculture: impact on soil suppressiveness, plant growth, and microbial communities.
    Qi Y; Ossowicki A; Yergeau É; Vigani G; Geissen V; Garbeva P
    FEMS Microbiol Ecol; 2022 Feb; 98(2):. PubMed ID: 35150249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Successive soybean-monoculture cropping assembles rhizosphere microbial communities for the soil suppression of soybean cyst nematode.
    Hamid MI; Hussain M; Wu Y; Zhang X; Xiang M; Liu X
    FEMS Microbiol Ecol; 2017 Jan; 93(1):. PubMed ID: 27789537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the Key Agents in a Disease-Suppressed Soil Managed by Reductive Soil Disinfestation.
    Liu L; Huang X; Zhao J; Zhang J; Cai Z
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30737346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zonal Soil Amendment with Simple Sugars to Elevate Soil C/N Ratios as an Alternative Disease Management Strategy for Rhizoctonia Damping-off of Sugar Beet.
    Shimizu Y; Sagiya D; Matsui M; Fukui R
    Plant Dis; 2018 Jul; 102(7):1434-1444. PubMed ID: 30673559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil suppressiveness to Rhizoctonia solani and microbial diversity.
    Bakker Y; Van Loon FM; Schneider JH
    Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.