These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27021263)

  • 1. Modelling the removal of volatile pollutants under transient conditions in a two-stage bioreactor using artificial neural networks.
    López ME; Rene ER; Boger Z; Veiga MC; Kennes C
    J Hazard Mater; 2017 Feb; 324(Pt A):100-109. PubMed ID: 27021263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage gas-phase bioreactor for the combined removal of hydrogen sulphide, methanol and alpha-pinene.
    Rene ER; Jin Y; Veiga MC; Kennes C
    Environ Technol; 2009 Nov; 30(12):1261-72. PubMed ID: 19950468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-stage biotrickling filter for the removal of a mixture of volatile pollutants from air: performance and microbial community analysis.
    López ME; Rene ER; Malhautier L; Rocher J; Bayle S; Veiga MC; Kennes C
    Bioresour Technol; 2013 Jun; 138():245-52. PubMed ID: 23612184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient-state studies and neural modeling of the removal of a gas-phase pollutant mixture in a biotrickling filter.
    López ME; Boger Z; Rene ER; Veiga MC; Kennes C
    J Hazard Mater; 2014 Mar; 269():45-55. PubMed ID: 24315813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the performance of a thermophilic biotrickling filter for alpha-pinene removal from polluted air.
    Montes M; Veiga MC; Kennes C
    Environ Technol; 2014; 35(17-20):2466-75. PubMed ID: 25145201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural network models for biological waste-gas treatment systems.
    Rene ER; Estefanía López M; Veiga MC; Kennes C
    N Biotechnol; 2011 Dec; 29(1):56-73. PubMed ID: 21784184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient-state operation of an anoxic biotrickling filter for H
    Khanongnuch R; Di Capua F; Lakaniemi AM; Rene ER; Lens PNL
    J Hazard Mater; 2019 Sep; 377():42-51. PubMed ID: 31136892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative assessment of the performance of one- and two-liquid phase biotrickling filters for the simultaneous abatement of gaseous mixture of methanol, α-pinene, and hydrogen sulfide.
    Zamir SM; Rene ER; Veiga MC; Kennes C
    Chemosphere; 2023 Nov; 341():140022. PubMed ID: 37657695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Performance of an innovative polyethylene carrier biotrickling filter treating hydrogen sulphide gas].
    Wu YG; Ren HQ; Ding LL
    Huan Jing Ke Xue; 2010 Jul; 31(7):1451-6. PubMed ID: 20825009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-liquid-phase mesophilic and thermophilic biotrickling filters for the biodegradation of alpha-pinene.
    Montes M; Veiga MC; Kennes C
    Bioresour Technol; 2010 Dec; 101(24):9493-9. PubMed ID: 20716484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of a combined system of biotrickling filter and photocatalytic reactor in treating waste gases from a paint-manufacturing plant.
    Zeng P; Li J; Liao D; Tu X; Xu M; Sun G
    Environ Technol; 2016; 37(2):237-44. PubMed ID: 26137915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural networks as a tool for control and management of a biological reactor for treating hydrogen sulphide.
    Elías A; Ibarra-Berastegi G; Arias R; Barona A
    Bioprocess Biosyst Eng; 2006 Jul; 29(2):129-36. PubMed ID: 16770593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii.
    Marycz M; Rodríguez Y; Gębicki J; Muñoz R
    Chemosphere; 2022 Nov; 306():135608. PubMed ID: 35810858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different strategies for transient-state operation of a biotrickling filter treating toluene vapor.
    Alinejad A; Zamir SM; Shojaosadati SA
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3451-3462. PubMed ID: 28062975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [BTF performance treating a chlorobenzene-contaminated gas stream].
    Zhou QW; Zhu RY; Hu J; Zhang LL; Chen JM
    Huan Jing Ke Xue; 2011 Dec; 32(12):3673-9. PubMed ID: 22468538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of solid polymers on the response of multi-phase bioreactors treating α-pinene-polluted air.
    Montes M; Veiga MC; Kennes C
    N Biotechnol; 2014 Sep; 31(5):475-81. PubMed ID: 25009016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady- and transient-state performance of a thermophilic suspended-growth bioreactor for α-pinene removal from polluted air.
    Montes M; Rene ER; Veiga MC; Kennes C
    Chemosphere; 2013 Nov; 93(11):2914-21. PubMed ID: 24183623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of a composite membrane bioreactor for the removal of ethyl acetate from waste air.
    Álvarez-Hornos FJ; Volckaert D; Heynderickx PM; Van Langenhove H
    Bioresour Technol; 2011 Oct; 102(19):8893-8. PubMed ID: 21763129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Composite CVOCs Removal in a Combined System of Nonthermal Plasma and a Biotrickling Filter].
    Guo HQ; Miao JJ; Jiang LY; Zhang D
    Huan Jing Ke Xue; 2018 Feb; 39(2):640-647. PubMed ID: 29964826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced biodegradation of styrene vapors in the biotrickling filter inoculated with biosurfactant-generating bacteria under H
    Rezaei M; Moussavi G; Naddafi K; Johnson MS
    Sci Total Environ; 2020 Feb; 704():135325. PubMed ID: 31839317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.