BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 27021489)

  • 1. Old cells, new tricks: chromatin structure in senescence.
    Parry AJ; Narita M
    Mamm Genome; 2016 Aug; 27(7-8):320-31. PubMed ID: 27021489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterochromatin and its relationship to cell senescence and cancer therapy.
    Zhang R; Adams PD
    Cell Cycle; 2007 Apr; 6(7):784-9. PubMed ID: 17377503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Aspects of Senescence and Organismal Ageing-DNA Damage Response, Telomeres, Inflammation and Chromatin.
    Sławińska N; Krupa R
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33435578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability.
    Nelson DM; Jaber-Hijazi F; Cole JJ; Robertson NA; Pawlikowski JS; Norris KT; Criscione SW; Pchelintsev NA; Piscitello D; Stong N; Rai TS; McBryan T; Otte GL; Nixon C; Clark W; Riethman H; Wu H; Schotta G; Garcia BA; Neretti N; Baird DM; Berger SL; Adams PD
    Genome Biol; 2016 Jul; 17(1):158. PubMed ID: 27457071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Chromatin Landscape of Cellular Senescence.
    Criscione SW; Teo YV; Neretti N
    Trends Genet; 2016 Nov; 32(11):751-761. PubMed ID: 27692431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration in the chromatin landscape during the DNA damage response: Continuous rotation of the gear driving cellular senescence and aging.
    Qian J; Zhou X; Tanaka K; Takahashi A
    DNA Repair (Amst); 2023 Nov; 131():103572. PubMed ID: 37742405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging.
    Liu Z; Ji Q; Ren J; Yan P; Wu Z; Wang S; Sun L; Wang Z; Li J; Sun G; Liang C; Sun R; Jiang X; Hu J; Ding Y; Wang Q; Bi S; Wei G; Cao G; Zhao G; Wang H; Zhou Q; Belmonte JCI; Qu J; Zhang W; Liu GH
    Dev Cell; 2022 Jun; 57(11):1347-1368.e12. PubMed ID: 35613614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging.
    Adams PD
    Gene; 2007 Aug; 397(1-2):84-93. PubMed ID: 17544228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear and chromatin reorganization during cell senescence and aging - a mini-review.
    Shin DM; Kucia M; Ratajczak MZ
    Gerontology; 2011; 57(1):76-84. PubMed ID: 20134149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global reorganization of the nuclear landscape in senescent cells.
    Chandra T; Ewels PA; Schoenfelder S; Furlan-Magaril M; Wingett SW; Kirschner K; Thuret JY; Andrews S; Fraser P; Reik W
    Cell Rep; 2015 Feb; 10(4):471-83. PubMed ID: 25640177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic Regulation of Cellular Senescence.
    Crouch J; Shvedova M; Thanapaul RJRS; Botchkarev V; Roh D
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape.
    Shah PP; Donahue G; Otte GL; Capell BC; Nelson DM; Cao K; Aggarwala V; Cruickshanks HA; Rai TS; McBryan T; Gregory BD; Adams PD; Berger SL
    Genes Dev; 2013 Aug; 27(16):1787-99. PubMed ID: 23934658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence.
    Swanson EC; Manning B; Zhang H; Lawrence JB
    J Cell Biol; 2013 Dec; 203(6):929-42. PubMed ID: 24344186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond SAHF: An integrative view of chromatin compartmentalization during senescence.
    Olan I; Handa T; Narita M
    Curr Opin Cell Biol; 2023 Aug; 83():102206. PubMed ID: 37451177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin.
    Hu H; Ji Q; Song M; Ren J; Liu Z; Wang Z; Liu X; Yan K; Hu J; Jing Y; Wang S; Zhang W; Liu GH; Qu J
    Nucleic Acids Res; 2020 Jun; 48(11):6001-6018. PubMed ID: 32427330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ageing epigenome: damaged beyond repair?
    Sinclair DA; Oberdoerffer P
    Ageing Res Rev; 2009 Jul; 8(3):189-98. PubMed ID: 19439199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements.
    De Cecco M; Criscione SW; Peckham EJ; Hillenmeyer S; Hamm EA; Manivannan J; Peterson AL; Kreiling JA; Neretti N; Sedivy JM
    Aging Cell; 2013 Apr; 12(2):247-56. PubMed ID: 23360310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of chromatin reorganization in the process of cellular senescence.
    Tominaga K; Pereira-Smith OM
    Curr Drug Targets; 2012 Dec; 13(13):1593-602. PubMed ID: 22998188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are there roles for brain cell senescence in aging and neurodegenerative disorders?
    Tan FC; Hutchison ER; Eitan E; Mattson MP
    Biogerontology; 2014 Dec; 15(6):643-60. PubMed ID: 25305051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA double strand break responses and chromatin alterations within the aging cell.
    Klement K; Goodarzi AA
    Exp Cell Res; 2014 Nov; 329(1):42-52. PubMed ID: 25218945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.