BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27021623)

  • 1. Identification of WD40 repeats by secondary structure-aided profile-profile alignment.
    Wang C; Dong X; Han L; Su XD; Zhang Z; Li J; Song J
    J Theor Biol; 2016 Jun; 398():122-9. PubMed ID: 27021623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the WD40 domain of human PRPF19.
    Zhang Y; Li Y; Liang X; Zhu Z; Sun H; He H; Min J; Liao S; Liu Y
    Biochem Biophys Res Commun; 2017 Nov; 493(3):1250-1253. PubMed ID: 28962858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WDSPdb: a database for WD40-repeat proteins.
    Wang Y; Hu XJ; Zou XD; Wu XH; Ye ZQ; Wu YD
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D339-44. PubMed ID: 25348404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is Asp-His-Ser/Thr-Trp tetrad hydrogen-bond network important to WD40-repeat proteins: a statistical and theoretical study.
    Wu XH; Zhang H; Wu YD
    Proteins; 2010 Apr; 78(5):1186-94. PubMed ID: 19927323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C-terminal WD40 repeats on the TOPLESS co-repressor function as a protein-protein interaction surface.
    Collins J; O'Grady K; Chen S; Gurley W
    Plant Mol Biol; 2019 May; 100(1-2):47-58. PubMed ID: 30783952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of pleckstrin homology domains to WD40/beta-transducin repeat containing segments of the protein product of the Lis-1 gene.
    Wang DS; Shaw R; Hattori M; Arai H; Inoue K; Shaw G
    Biochem Biophys Res Commun; 1995 Apr; 209(2):622-9. PubMed ID: 7733932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for WD40 repeat detection and secondary structure prediction.
    Wang Y; Jiang F; Zhuo Z; Wu XH; Wu YD
    PLoS One; 2013; 8(6):e65705. PubMed ID: 23776530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families.
    Quistgaard EM; Thirup SS
    BMC Struct Biol; 2009 Jul; 9():46. PubMed ID: 19594936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WD40 Repeat Proteins: Signalling Scaffold with Diverse Functions.
    Jain BP; Pandey S
    Protein J; 2018 Oct; 37(5):391-406. PubMed ID: 30069656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a protein unique to the genus Plasmodium that contains a WD40 repeat domain and extensive low-complexity sequence.
    Cortés GT; Beltran MMG; Gómez-Alegría CJ; Wiser MF
    Parasitol Res; 2021 Jul; 120(7):2617-2629. PubMed ID: 34142223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the WD40-domain of human ATG16L1.
    Bajagic M; Archna A; Büsing P; Scrima A
    Protein Sci; 2017 Sep; 26(9):1828-1837. PubMed ID: 28685931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes.
    Appleton BA; Wu P; Wiesmann C
    Structure; 2006 Jan; 14(1):87-96. PubMed ID: 16407068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking repeats using significance and transitivity.
    Szklarczyk R; Heringa J
    Bioinformatics; 2004 Aug; 20 Suppl 1():i311-7. PubMed ID: 15262814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals.
    Prag S; Adams JC
    BMC Bioinformatics; 2003 Sep; 4():42. PubMed ID: 13678422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and characterization of WD40-repeat protein from Clonorchis sinensis.
    Cho PY; Kim TI; Yoo WG; Li S; Hong SJ; Kim TY; Park YS; Song KY; Choi MH; Hong ST; Chung YJ; LoVerde PT; Osman A
    Parasitol Res; 2007 Dec; 102(1):53-6. PubMed ID: 17721710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refinement by shifting secondary structure elements improves sequence alignments.
    Tong J; Pei J; Otwinowski Z; Grishin NV
    Proteins; 2015 Mar; 83(3):411-27. PubMed ID: 25546158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell surface proteins in archaeal and bacterial genomes comprising "LVIVD", "RIVW" and "LGxL" tandem sequence repeats are predicted to fold as beta-propeller.
    Adindla S; Inampudi KK; Guruprasad L
    Int J Biol Macromol; 2007 Oct; 41(4):454-68. PubMed ID: 17681373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosolic chaperonin protects folding intermediates of Gbeta from aggregation by recognizing hydrophobic beta-strands.
    Kubota S; Kubota H; Nagata K
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8360-5. PubMed ID: 16717193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical and structural characterization of the thermostable WD40 domain of a prokaryotic protein, Thermomonospora curvata PkwA.
    Shen C; Du Y; Qiao F; Kong T; Yuan L; Zhang D; Wu X; Li D; Wu YD
    Sci Rep; 2018 Aug; 8(1):12965. PubMed ID: 30154510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.