These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 27021657)

  • 41. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy.
    Sillrén P; Matic A; Karlsson M; Koza M; Maccarini M; Fouquet P; Götz M; Bauer T; Gulich R; Lunkenheimer P; Loidl A; Mattsson J; Gainaru C; Vynokur E; Schildmann S; Bauer S; Böhmer R
    J Chem Phys; 2014 Mar; 140(12):124501. PubMed ID: 24697453
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at T(c) or T(B).
    Ngai KL; Habasaki J
    J Chem Phys; 2014 Sep; 141(11):114502. PubMed ID: 25240359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations.
    Kofu M; Tyagi M; Inamura Y; Miyazaki K; Yamamuro O
    J Chem Phys; 2015 Dec; 143(23):234502. PubMed ID: 26696061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Charge transport and dipolar relaxations in phosphonium-based ionic liquids.
    Cosby T; Vicars Z; Mapesa EU; Tsunashima K; Sangoro J
    J Chem Phys; 2017 Dec; 147(23):234504. PubMed ID: 29272921
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A robust comparison of dynamical scenarios in a glass-forming liquid.
    Vispa A; Busch S; Tamarit JL; Unruh T; Fernandez-Alonso F; Pardo LC
    Phys Chem Chem Phys; 2016 Feb; 18(5):3975-81. PubMed ID: 26771030
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Primary and secondary relaxations in bis-5-hydroxypentylphthalate.
    Maślanka S; Paluch M; Sułkowski WW; Roland CM
    J Chem Phys; 2005 Feb; 122(8):84511. PubMed ID: 15836067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Orientational and translational dynamics in room temperature ionic liquids.
    Rivera A; Brodin A; Pugachev A; Rössler EA
    J Chem Phys; 2007 Mar; 126(11):114503. PubMed ID: 17381216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamics of propylene glycol and its oligomers confined in clay.
    Swenson J; Schwartz GA; Bergman R; Howells WS
    Eur Phys J E Soft Matter; 2003 Sep; 12(1):179-83. PubMed ID: 15007698
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Boiling temperature as a scaling parameter for the microscopic relaxation dynamics in molecular liquids.
    Mamontov E
    J Phys Chem B; 2013 Aug; 117(32):9501-7. PubMed ID: 23869489
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?
    Voudouris P; Gomopoulos N; Le Grand A; Hadjichristidis N; Floudas G; Ediger MD; Fytas G
    J Chem Phys; 2010 Feb; 132(7):074906. PubMed ID: 20170250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Classification of secondary relaxation in glass-formers based on dynamic properties.
    Ngai KL; Paluch M
    J Chem Phys; 2004 Jan; 120(2):857-73. PubMed ID: 15267922
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distinguishing different classes of secondary relaxations from vapour deposited ultrastable glasses.
    Rodríguez-Tinoco C; Ngai KL; Rams-Baron M; Rodríguez-Viejo J; Paluch M
    Phys Chem Chem Phys; 2018 Aug; 20(34):21925-21933. PubMed ID: 29862402
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data.
    Khodadadi S; Pawlus S; Sokolov AP
    J Phys Chem B; 2008 Nov; 112(45):14273-80. PubMed ID: 18942780
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dielectric spectroscopy study of myoglobin in glycerol-water mixtures.
    Roy S; Richert R
    Biochim Biophys Acta; 2014 Feb; 1844(2):323-9. PubMed ID: 24291287
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theory of relaxation dynamics in glass-forming hydrogen-bonded liquids.
    Hentschel HG; Procaccia I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031507. PubMed ID: 18517388
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Growing point-to-set length scales in Lennard-Jones glass-forming liquids.
    Li YW; Xu WS; Sun ZY
    J Chem Phys; 2014 Mar; 140(12):124502. PubMed ID: 24697454
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.
    Popova VA; Surovtsev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032308. PubMed ID: 25314447
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coupling of Caged Molecule Dynamics to JG β-Relaxation III: van der Waals Glasses.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12519-25. PubMed ID: 26340473
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the nature of the high-frequency relaxation in a molecular glass former: a joint study of glycerol by field cycling NMR, dielectric spectroscopy, and light scattering.
    Gainaru C; Lips O; Troshagina A; Kahlau R; Brodin A; Fujara F; Rössler EA
    J Chem Phys; 2008 May; 128(17):174505. PubMed ID: 18465928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.