BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27021871)

  • 1. EVOLUTIONARY ANALYSES OF THE NUCLEAR-ENCODED PHOTOSYNTHETIC GENE psbO FROM TERTIARY PLASTID-CONTAINING ALGAE IN DINOPHYTA(1).
    Yokoyama A; Takahashi F; Kataoka H; Hara Y; Nozaki H
    J Phycol; 2011 Apr; 47(2):407-14. PubMed ID: 27021871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont.
    Ishida K; Green BR
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9294-9. PubMed ID: 12089328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates.
    Takishita K; Ishida K; Maruyama T
    Protist; 2004 Dec; 155(4):447-58. PubMed ID: 15648724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis.
    Yoon HS; Hackett JD; Bhattacharya D
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11724-9. PubMed ID: 12172008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyanobacterial genes transmitted to the nucleus before divergence of red algae in the Chromista.
    Nozaki H; Matsuzaki M; Misumi O; Kuroiwa H; Hasegawa M; Higashiyama T; Shin-I T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2004 Jul; 59(1):103-13. PubMed ID: 15383913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences.
    Nozaki H; Ohta N; Matsuzaki M; Misumi O; Kuroiwa T
    J Mol Evol; 2003 Oct; 57(4):377-82. PubMed ID: 14708571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages.
    Patron NJ; Inagaki Y; Keeling PJ
    Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tertiary endosymbiosis driven genome evolution in dinoflagellate algae.
    Yoon HS; Hackett JD; Van Dolah FM; Nosenko T; Lidie KL; Bhattacharya D
    Mol Biol Evol; 2005 May; 22(5):1299-308. PubMed ID: 15746017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-colored dinoflagellate Lepidodinium chlorophorum.
    Takishita K; Kawachi M; Noël MH; Matsumoto T; Kakizoe N; Watanabe MM; Inouye I; Ishida K; Hashimoto T; Inagaki Y
    Gene; 2008 Feb; 410(1):26-36. PubMed ID: 18191504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.
    Huerlimann R; Zenger KR; Jerry DR; Heimann K
    PLoS One; 2015; 10(7):e0131099. PubMed ID: 26131555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids.
    Le Corguillé G; Pearson G; Valente M; Viegas C; Gschloessl B; Corre E; Bailly X; Peters AF; Jubin C; Vacherie B; Cock JM; Leblanc C
    BMC Evol Biol; 2009 Oct; 9():253. PubMed ID: 19835607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns in evolutionary origins of heme, chlorophyll
    Matsuo E; Inagaki Y
    PeerJ; 2018; 6():e5345. PubMed ID: 30083465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses.
    Teich R; Zauner S; Baurain D; Brinkmann H; Petersen J
    Protist; 2007 Jul; 158(3):263-76. PubMed ID: 17368985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Did trypanosomatid parasites contain a eukaryotic alga-derived plastid in their evolutionary past?
    Bodył A; Mackiewicz P; Milanowski R
    J Parasitol; 2010 Apr; 96(2):465-75. PubMed ID: 20540605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids.
    Kilian O; Kroth PG
    Plant J; 2005 Jan; 41(2):175-83. PubMed ID: 15634195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis.
    Nosenko T; Lidie KL; Van Dolah FM; Lindquist E; Cheng JF; Bhattacharya D
    Mol Biol Evol; 2006 Nov; 23(11):2026-38. PubMed ID: 16877498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids.
    Harper JT; Keeling PJ
    Mol Biol Evol; 2003 Oct; 20(10):1730-5. PubMed ID: 12885964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.