These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27021948)

  • 1. Combating Frosting with Joule-Heated Liquid-Infused Superhydrophobic Coatings.
    Elsharkawy M; Tortorella D; Kapatral S; Megaridis CM
    Langmuir; 2016 May; 32(17):4278-88. PubMed ID: 27021948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Defrosting on Scalable Superhydrophobic Surfaces.
    Murphy KR; McClintic WT; Lester KC; Collier CP; Boreyko JB
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24308-24317. PubMed ID: 28653826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frosting Behavior of Superhydrophobic Nanoarrays under Ultralow Temperature.
    Zhang W; Wang S; Xiao Z; Yu X; Liang C; Zhang Y
    Langmuir; 2017 Sep; 33(36):8891-8898. PubMed ID: 28829603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frost Self-Removal Mechanism during Defrosting on Vertical Superhydrophobic Surfaces: Peeling Off or Jumping Off.
    Chu F; Wen D; Wu X
    Langmuir; 2018 Dec; 34(48):14562-14569. PubMed ID: 30360621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Frost Forms and Grows on Lubricated Micro- and Nanostructured Surfaces.
    Hauer L; Wong WSY; Donadei V; Hegner KI; Kondic L; Vollmer D
    ACS Nano; 2021 Mar; 15(3):4658-4668. PubMed ID: 33647197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of frost formation on lubricant-impregnated surfaces.
    Rykaczewski K; Anand S; Subramanyam SB; Varanasi KK
    Langmuir; 2013 Apr; 29(17):5230-8. PubMed ID: 23565857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces.
    Liu X; Chen H; Zhao Z; Wang Y; Liu H; Zhang D
    Sci Rep; 2017 Nov; 7(1):14722. PubMed ID: 29116123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-effective frost-free coatings based on superhydrophobic aligned nanocones.
    Xu Q; Li J; Tian J; Zhu J; Gao X
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):8976-80. PubMed ID: 24912381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro- and Nanoengineered Metal Additively Manufactured Surfaces for Enhanced Anti-Frosting Applications.
    Zhao H; Ye H; Fazle Rabbi K; Wang X; Miljkovic N; Ho JY
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35697-35715. PubMed ID: 38934253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary Balancing: Designing Frost-Resistant Lubricant-Infused Surfaces.
    Wong WSY; Hegner KI; Donadei V; Hauer L; Naga A; Vollmer D
    Nano Lett; 2020 Dec; 20(12):8508-8515. PubMed ID: 33206541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic Slippery Surface Promotes Efficient Defrosting.
    Yang S; Li W; Song Y; Ying Y; Wen R; Du B; Jin Y; Wang Z; Ma X
    Langmuir; 2021 Oct; 37(40):11931-11938. PubMed ID: 34570495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on frost-formation characteristics on cold surface of arched copper sample.
    Chen T; Cong Q; Jin J; Choy KL
    PLoS One; 2018; 13(12):e0208721. PubMed ID: 30533064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Durability and Degradation Mechanisms of Antifrosting Surfaces.
    Hoque MJ; Yan X; Qiu H; Qin Y; Du X; Stermer J; Miljkovic N
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13711-13723. PubMed ID: 36862945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exceptional Anti-Icing Performance of Self-Impregnating Slippery Surfaces.
    Stamatopoulos C; Hemrle J; Wang D; Poulikakos D
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10233-10242. PubMed ID: 28230349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
    Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J
    ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Methyl-Functionalized Silica Nanosprings for Superhydrophobic and Defrosting Coatings.
    Corti G; Schmiesing NC; Barrington GT; Humphreys MG; Sommers AD
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4607-4615. PubMed ID: 30615841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed frost growth on jumping-drop superhydrophobic surfaces.
    Boreyko JB; Collier CP
    ACS Nano; 2013 Feb; 7(2):1618-27. PubMed ID: 23286736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic defrosting on nanostructured superhydrophobic surfaces.
    Boreyko JB; Srijanto BR; Nguyen TD; Vega C; Fuentes-Cabrera M; Collier CP
    Langmuir; 2013 Jul; 29(30):9516-24. PubMed ID: 23822157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed Frost Growth on Nanoporous Microstructured Surfaces Utilizing Jumping and Sweeping Condensates.
    Mohammadian B; Annavarapu RK; Raiyan A; Nemani SK; Kim S; Wang M; Sojoudi H
    Langmuir; 2020 Jun; 36(24):6635-6650. PubMed ID: 32418428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.