BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27022003)

  • 1. The genetic landscape of paediatric de novo acute myeloid leukaemia as defined by single nucleotide polymorphism array and exon sequencing of 100 candidate genes.
    Olsson L; Zettermark S; Biloglav A; Castor A; Behrendtz M; Forestier E; Paulsson K; Johansson B
    Br J Haematol; 2016 Jul; 174(2):292-301. PubMed ID: 27022003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia.
    Shiba N; Yoshida K; Shiraishi Y; Okuno Y; Yamato G; Hara Y; Nagata Y; Chiba K; Tanaka H; Terui K; Kato M; Park MJ; Ohki K; Shimada A; Takita J; Tomizawa D; Kudo K; Arakawa H; Adachi S; Taga T; Tawa A; Ito E; Horibe K; Sanada M; Miyano S; Ogawa S; Hayashi Y
    Br J Haematol; 2016 Nov; 175(3):476-489. PubMed ID: 27470916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational profiling of acute myeloid leukemia with normal cytogenetics in Brazilian patients: the value of next-generation sequencing for genomic classification.
    de Noronha TR; Mitne-Neto M; Chauffaille ML
    J Investig Med; 2017 Dec; 65(8):1155-1158. PubMed ID: 28923882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of Genomic Landscape in Patients with Acute Myeloid Leukemia].
    Wang SM; Zheng HJ; Tian Y; Zhang JM; Yao JH
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2020 Jun; 28(3):797-801. PubMed ID: 32552938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myeloid malignancies with acquired trisomy 21 as the sole cytogenetic change are clinically highly variable and display a heterogeneous pattern of copy number alterations and mutations.
    Larsson N; Lilljebjörn H; Lassen C; Johansson B; Fioretos T
    Eur J Haematol; 2012 Feb; 88(2):136-43. PubMed ID: 21933280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical relevance of molecular aberrations in paediatric acute myeloid leukaemia at first relapse.
    Bachas C; Schuurhuis GJ; Reinhardt D; Creutzig U; Kwidama ZJ; Zwaan CM; van den Heuvel-Eibrink MM; De Bont ES; Elitzur S; Rizzari C; de Haas V; Zimmermann M; Cloos J; Kaspers GJ
    Br J Haematol; 2014 Sep; 166(6):902-10. PubMed ID: 24962064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of class I and II aberrations in Iraqi childhood acute myeloid leukemia using filter paper cards.
    Al-Kzayer LF; Uyen le TN; Al-Jadiry MF; Al-Hadad SA; Al-Badri SA; Ghali HH; Ameen NA; Liu T; Matsuda K; Abdulkadhim JM; Al-Shujairi TA; Matti ZI; Hasan JG; Al-Abdullah HM; Al-Ani MH; Saber PA; Khalil HM; Inoshita T; Kamata M; Koike K; Sakashita K
    Ann Hematol; 2014 Jun; 93(6):949-55. PubMed ID: 24464319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep sequencing and SNP array analyses of pediatric T-cell acute lymphoblastic leukemia reveal NOTCH1 mutations in minor subclones and a high incidence of uniparental isodisomies affecting CDKN2A.
    Karrman K; Castor A; Behrendtz M; Forestier E; Olsson L; Ehinger M; Biloglav A; Fioretos T; Paulsson K; Johansson B
    J Hematol Oncol; 2015 Apr; 8():42. PubMed ID: 25903014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AML1/RUNX1 gene point mutations in childhood myeloid malignancies.
    Migas A; Savva N; Mishkova O; Aleinikova OV
    Pediatr Blood Cancer; 2011 Oct; 57(4):583-7. PubMed ID: 21294243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Close correlation of copy number aberrations detected by next-generation sequencing with results from routine cytogenetics in acute myeloid leukemia.
    Vosberg S; Herold T; Hartmann L; Neumann M; Opatz S; Metzeler KH; Schneider S; Graf A; Krebs S; Blum H; Baldus CD; Hiddemann W; Spiekermann K; Bohlander SK; Mansmann U; Greif PA
    Genes Chromosomes Cancer; 2016 Jul; 55(7):553-67. PubMed ID: 27015608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TP53 mutations and relevance of expression of TP53 pathway genes in paediatric acute myeloid leukaemia.
    Cucchi DGJ; Bachas C; Klein K; Huttenhuis S; Zwaan CM; Ossenkoppele GJ; Janssen JMWM; Kaspers GL; Cloos J
    Br J Haematol; 2020 Mar; 188(5):736-739. PubMed ID: 31588562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The applicability of the WHO classification in paediatric AML. A NOPHO-AML study.
    Sandahl JD; Kjeldsen E; Abrahamsson J; Ha SY; Heldrup J; Jahnukainen K; Jónsson ÓG; Lausen B; Palle J; Zeller B; Forestier E; Hasle H
    Br J Haematol; 2015 Jun; 169(6):859-67. PubMed ID: 25819835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular Genetic Characteristics of Acute Myeloid Leukemia Patients with
    Jiang Y; Chao HY; Lu XZ; Wu P; Sun XC
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2022 Dec; 30(6):1661-1667. PubMed ID: 36476886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Characterization of Pediatric Acute Myeloid Leukemia: Results of a Multicentric Study in Brazil.
    Andrade FG; Noronha EP; Brisson GD; Dos Santos Vicente Bueno F; Cezar IS; Terra-Granado E; Thuler LCS; Pombo-de-Oliveira MS;
    Arch Med Res; 2016 Nov; 47(8):656-667. PubMed ID: 28476193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational profiling of therapy-related myelodysplastic syndromes and acute myeloid leukemia by next generation sequencing, a comparison with de novo diseases.
    Ok CY; Patel KP; Garcia-Manero G; Routbort MJ; Fu B; Tang G; Goswami M; Singh R; Kanagal-Shamanna R; Pierce SA; Young KH; Kantarjian HM; Medeiros LJ; Luthra R; Wang SA
    Leuk Res; 2015 Mar; 39(3):348-54. PubMed ID: 25573287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additional genomic aberrations identified by single nucleotide polymorphism array-based karyotyping in an acute myeloid leukemia case with isolated del(20q) abnormality.
    Hahm C; Mun YC; Seong CM; Chung WS; Huh J
    Ann Lab Med; 2012 Nov; 32(6):445-9. PubMed ID: 23130347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of the AML profiler (Skyline™ Array) for patient risk stratification in a multicentre trial: a preliminary comparison with the conventional approach.
    Nomdedéu JF; Puigdecanet E; Bussaglia E; Hernández JJ; Carricondo M; Estivill C; Martí-Tutusaus JM; Tormo M; Zamora L; Serrano E; Perea G; de Llano MPQ; García A; Sánchez-Ortega I; Ribera JM; Nonell L; Aventin A; Solé F; Brunet MS; Sierra J
    Hematol Oncol; 2017 Dec; 35(4):778-788. PubMed ID: 27140599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate and Sensitive Analysis of Minimal Residual Disease in Acute Myeloid Leukemia Using Deep Sequencing of Single Nucleotide Variations.
    Delsing Malmberg E; Rehammar A; Pereira MB; Abrahamsson J; Samuelsson T; Ståhlman S; Asp J; Tierens A; Palmqvist L; Kristiansson E; Fogelstrand L
    J Mol Diagn; 2019 Jan; 21(1):149-162. PubMed ID: 30273780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing.
    Malmberg EB; Ståhlman S; Rehammar A; Samuelsson T; Alm SJ; Kristiansson E; Abrahamsson J; Garelius H; Pettersson L; Ehinger M; Palmqvist L; Fogelstrand L
    Eur J Haematol; 2017 Jan; 98(1):26-37. PubMed ID: 27197529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis offers a comprehensive illustration of the genetic background of pediatric acute myeloid leukemia.
    Shiba N; Yoshida K; Hara Y; Yamato G; Shiraishi Y; Matsuo H; Okuno Y; Chiba K; Tanaka H; Kaburagi T; Takeuchi M; Ohki K; Sanada M; Okubo J; Tomizawa D; Taki T; Shimada A; Sotomatsu M; Horibe K; Taga T; Adachi S; Tawa A; Miyano S; Ogawa S; Hayashi Y
    Blood Adv; 2019 Oct; 3(20):3157-3169. PubMed ID: 31648321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.