These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
584 related articles for article (PubMed ID: 27022035)
1. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? Schurch NJ; Schofield P; Gierliński M; Cole C; Sherstnev A; Singh V; Wrobel N; Gharbi K; Simpson GG; Owen-Hughes T; Blaxter M; Barton GJ RNA; 2016 Jun; 22(6):839-51. PubMed ID: 27022035 [TBL] [Abstract][Full Text] [Related]
2. Optimization of an RNA-Seq Differential Gene Expression Analysis Depending on Biological Replicate Number and Library Size. Lamarre S; Frasse P; Zouine M; Labourdette D; Sainderichin E; Hu G; Le Berre-Anton V; Bouzayen M; Maza E Front Plant Sci; 2018; 9():108. PubMed ID: 29491871 [TBL] [Abstract][Full Text] [Related]
3. Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment. Gierliński M; Cole C; Schofield P; Schurch NJ; Sherstnev A; Singh V; Wrobel N; Gharbi K; Simpson G; Owen-Hughes T; Blaxter M; Barton GJ Bioinformatics; 2015 Nov; 31(22):3625-30. PubMed ID: 26206307 [TBL] [Abstract][Full Text] [Related]
4. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. Robles JA; Qureshi SE; Stephen SJ; Wilson SR; Burden CJ; Taylor JM BMC Genomics; 2012 Sep; 13():484. PubMed ID: 22985019 [TBL] [Abstract][Full Text] [Related]
5. A comparison of strategies for generating artificial replicates in RNA-seq experiments. Saremi B; Gusmag F; Distl O; Schaarschmidt F; Metzger J; Becker S; Jung K Sci Rep; 2022 May; 12(1):7170. PubMed ID: 35505053 [TBL] [Abstract][Full Text] [Related]
6. Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates. Al Seesi S; Tiagueu YT; Zelikovsky A; Măndoiu II BMC Genomics; 2014; 15 Suppl 8(Suppl 8):S2. PubMed ID: 25435284 [TBL] [Abstract][Full Text] [Related]
7. A comparative study of techniques for differential expression analysis on RNA-Seq data. Zhang ZH; Jhaveri DJ; Marshall VM; Bauer DC; Edson J; Narayanan RK; Robinson GJ; Lundberg AE; Bartlett PF; Wray NR; Zhao QY PLoS One; 2014; 9(8):e103207. PubMed ID: 25119138 [TBL] [Abstract][Full Text] [Related]
8. An evaluation of RNA-seq differential analysis methods. Li D; Zand MS; Dye TD; Goniewicz ML; Rahman I; Xie Z PLoS One; 2022; 17(9):e0264246. PubMed ID: 36112652 [TBL] [Abstract][Full Text] [Related]
9. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads. Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631 [TBL] [Abstract][Full Text] [Related]
10. RNA-seq differential expression studies: more sequence or more replication? Liu Y; Zhou J; White KP Bioinformatics; 2014 Feb; 30(3):301-4. PubMed ID: 24319002 [TBL] [Abstract][Full Text] [Related]
11. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies. Li X; Cooper NGF; O'Toole TE; Rouchka EC BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223 [TBL] [Abstract][Full Text] [Related]
12. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nookaew I; Papini M; Pornputtapong N; Scalcinati G; Fagerberg L; Uhlén M; Nielsen J Nucleic Acids Res; 2012 Nov; 40(20):10084-97. PubMed ID: 22965124 [TBL] [Abstract][Full Text] [Related]
13. Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster. Lin Y; Golovnina K; Chen ZX; Lee HN; Negron YL; Sultana H; Oliver B; Harbison ST BMC Genomics; 2016 Jan; 17():28. PubMed ID: 26732976 [TBL] [Abstract][Full Text] [Related]
14. Design and analysis of Bar-seq experiments. Robinson DG; Chen W; Storey JD; Gresham D G3 (Bethesda); 2014 Jan; 4(1):11-8. PubMed ID: 24192834 [TBL] [Abstract][Full Text] [Related]
15. Systematic benchmarking of statistical methods to assess differential expression of circular RNAs. Buratin A; Bortoluzzi S; Gaffo E Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592056 [TBL] [Abstract][Full Text] [Related]
16. Getting the most out of RNA-seq data analysis. Khang TF; Lau CY PeerJ; 2015; 3():e1360. PubMed ID: 26539333 [TBL] [Abstract][Full Text] [Related]
17. Power analysis and sample size estimation for RNA-Seq differential expression. Ching T; Huang S; Garmire LX RNA; 2014 Nov; 20(11):1684-96. PubMed ID: 25246651 [TBL] [Abstract][Full Text] [Related]
18. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data. Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823 [TBL] [Abstract][Full Text] [Related]
19. Statistical detection of differentially expressed genes based on RNA-seq: from biological to phylogenetic replicates. Gu X Brief Bioinform; 2016 Mar; 17(2):243-8. PubMed ID: 26108230 [TBL] [Abstract][Full Text] [Related]
20. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments. Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]