These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27022090)

  • 1. Shape-motion relationships of centering microtubule asters.
    Tanimoto H; Kimura A; Minc N
    J Cell Biol; 2016 Mar; 212(7):777-87. PubMed ID: 27022090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative approaches for the study of microtubule aster motion in large eggs.
    Tanimoto H; Minc N
    Methods Cell Biol; 2017; 139():69-80. PubMed ID: 28215340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pushing Mechanism for Microtubule Aster Positioning in a Large Cell Type.
    Meaders JL; de Matos SN; Burgess DR
    Cell Rep; 2020 Oct; 33(1):108213. PubMed ID: 33027648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule-dependent pushing forces contribute to long-distance aster movement and centration in
    Sulerud T; Sami AB; Li G; Kloxin A; Oakey J; Gatlin J
    Mol Biol Cell; 2020 Dec; 31(25):2791-2802. PubMed ID: 33026931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical Forces Determining the Persistency and Centering Precision of Microtubule Asters.
    Tanimoto H; Sallé J; Dodin L; Minc N
    Nat Phys; 2018 Aug; 14(8):848-854. PubMed ID: 30079097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taxol inhibits the nuclear movements during fertilization and induces asters in unfertilized sea urchin eggs.
    Schatten G; Schatten H; Bestor TH; Balczon R
    J Cell Biol; 1982 Aug; 94(2):455-65. PubMed ID: 6125518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric division through a reduction of microtubule centering forces.
    Sallé J; Xie J; Ershov D; Lacassin M; Dmitrieff S; Minc N
    J Cell Biol; 2019 Mar; 218(3):771-782. PubMed ID: 30563876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA.
    Athale CA; Dinarina A; Nedelec F; Karsenti E
    Phys Biol; 2014 Feb; 11(1):016008. PubMed ID: 24476749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-movement of astral microtubules, organelles and F-actin by dynein and actomyosin forces in frog egg cytoplasm.
    Pelletier JF; Field CM; Fürthauer S; Sonnett M; Mitchison TJ
    Elife; 2020 Dec; 9():. PubMed ID: 33284105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Spiral asters" and cytoplasmic rotation in sea urchin eggs: induction in Strongylocentrotus purpuratus eggs by elevated temperature.
    Schroeder TE; Battaglia DE
    J Cell Biol; 1985 Apr; 100(4):1056-62. PubMed ID: 3156865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the intracellular pH threshold for sperm aster formation in sea urchin eggs.
    Hamaguchi MS; Hamaguchi Y
    Dev Growth Differ; 2001 Aug; 43(4):447-58. PubMed ID: 11473551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubule-Based Mechanisms of Pronuclear Positioning.
    Meaders JL; Burgess DR
    Cells; 2020 Feb; 9(2):. PubMed ID: 32102180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study.
    Zhu J; Burakov A; Rodionov V; Mogilner A
    Mol Biol Cell; 2010 Dec; 21(24):4418-27. PubMed ID: 20980619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters.
    Laan L; Pavin N; Husson J; Romet-Lemonne G; van Duijn M; López MP; Vale RD; Jülicher F; Reck-Peterson SL; Dogterom M
    Cell; 2012 Feb; 148(3):502-14. PubMed ID: 22304918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cargo transport by cytoplasmic Dynein can center embryonic centrosomes.
    Longoria RA; Shubeita GT
    PLoS One; 2013; 8(7):e67710. PubMed ID: 23840877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers.
    Laan L; Roth S; Dogterom M
    Cell Cycle; 2012 Oct; 11(20):3750-7. PubMed ID: 22895049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule aster formation by dynein-dependent organelle transport.
    Nilsson H; Wallin M
    Cell Motil Cytoskeleton; 1998; 41(3):254-63. PubMed ID: 9829779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Reconstitution of Dynein Force Exertion in a Bulk Viscous Medium.
    Palenzuela H; Lacroix B; Sallé J; Minami K; Shima T; Jegou A; Romet-Lemonne G; Minc N
    Curr Biol; 2020 Nov; 30(22):4534-4540.e7. PubMed ID: 32946749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational model of dynein-dependent self-organization of microtubule asters.
    Cytrynbaum EN; Rodionov V; Mogilner A
    J Cell Sci; 2004 Mar; 117(Pt 8):1381-97. PubMed ID: 14996905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynein-dependent collection of membranes defines the architecture and position of microtubule asters in isolated, geometrically confined volumes of cell-free extracts.
    Sami AB; Gatlin JC
    Mol Biol Cell; 2022 Sep; 33(11):br20. PubMed ID: 35976715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.