These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 27022097)
1. Reducing Glucose Variability Due to Meals and Postprandial Exercise in T1DM Using Switched LPV Control: In Silico Studies. Colmegna PH; Sánchez-Peña RS; Gondhalekar R; Dassau E; Doyle FJ J Diabetes Sci Technol; 2016 May; 10(3):744-53. PubMed ID: 27022097 [TBL] [Abstract][Full Text] [Related]
2. Internal model control based module for the elimination of meal and exercise announcements in hybrid artificial pancreas systems. Sala-Mira I; Garcia P; Díez JL; Bondia J Comput Methods Programs Biomed; 2022 Nov; 226():107061. PubMed ID: 36116400 [TBL] [Abstract][Full Text] [Related]
3. Switched LPV Glucose Control in Type 1 Diabetes. Colmegna PH; Sanchez-Pena RS; Gondhalekar R; Dassau E; Doyle FJ IEEE Trans Biomed Eng; 2016 Jun; 63(6):1192-1200. PubMed ID: 26452196 [TBL] [Abstract][Full Text] [Related]
4. Closed-Loop Control Without Meal Announcement in Type 1 Diabetes. Cameron FM; Ly TT; Buckingham BA; Maahs DM; Forlenza GP; Levy CJ; Lam D; Clinton P; Messer LH; Westfall E; Levister C; Xie YY; Baysal N; Howsmon D; Patek SD; Bequette BW Diabetes Technol Ther; 2017 Sep; 19(9):527-532. PubMed ID: 28767276 [TBL] [Abstract][Full Text] [Related]
5. In Silico Analysis of an Exercise-Safe Artificial Pancreas With Multistage Model Predictive Control and Insulin Safety System. Garcia-Tirado J; Colmegna P; Corbett JP; Ozaslan B; Breton MD J Diabetes Sci Technol; 2019 Nov; 13(6):1054-1064. PubMed ID: 31679400 [TBL] [Abstract][Full Text] [Related]
6. Postprandial fuzzy adaptive strategy for a hybrid proportional derivative controller for the artificial pancreas. Beneyto A; Vehi J Med Biol Eng Comput; 2018 Nov; 56(11):1973-1986. PubMed ID: 29725915 [TBL] [Abstract][Full Text] [Related]
7. Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Announcement. Fushimi E; Colmegna P; De Battista H; Garelli F; Sánchez-Peña R J Diabetes Sci Technol; 2019 Nov; 13(6):1035-1043. PubMed ID: 31339059 [TBL] [Abstract][Full Text] [Related]
8. Control-relevant models for glucose control using a priori patient characteristics. van Heusden K; Dassau E; Zisser HC; Seborg DE; Doyle FJ IEEE Trans Biomed Eng; 2012 Jul; 59(7):1839-49. PubMed ID: 22127988 [TBL] [Abstract][Full Text] [Related]
9. In silico optimization of basal insulin infusion rate during exercise: implication for artificial pancreas. Schiavon M; Dalla Man C; Kudva YC; Basu A; Cobelli C J Diabetes Sci Technol; 2013 Nov; 7(6):1461-9. PubMed ID: 24351172 [TBL] [Abstract][Full Text] [Related]
10. A closed-loop artificial pancreas using a proportional integral derivative with double phase lead controller based on a new nonlinear model of glucose metabolism. Abbes IB; Richard PY; Lefebvre MA; Guilhem I; Poirier JY J Diabetes Sci Technol; 2013 May; 7(3):699-707. PubMed ID: 23759403 [TBL] [Abstract][Full Text] [Related]
11. Advanced hybrid artificial pancreas system improves on unannounced meal response - In silico comparison to currently available system. Garcia-Tirado J; Lv D; Corbett JP; Colmegna P; Breton MD Comput Methods Programs Biomed; 2021 Nov; 211():106401. PubMed ID: 34560603 [TBL] [Abstract][Full Text] [Related]
12. Automatic glycemic regulation for the pediatric population based on switched control and time-varying IOB constraints: an in silico study. Fushimi E; Serafini MC; De Battista H; Garelli F Med Biol Eng Comput; 2020 Oct; 58(10):2325-2337. PubMed ID: 32710375 [TBL] [Abstract][Full Text] [Related]
13. Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties. Shi D; Dassau E; Doyle FJ IEEE Trans Biomed Eng; 2019 Apr; 66(4):1045-1054. PubMed ID: 30142748 [TBL] [Abstract][Full Text] [Related]
14. Reducing risks in type 1 diabetes using H∞ control. Colmegna P; Sanchez Pena RS; Gondhalekar R; Dassau E; Doyle Iii FJ IEEE Trans Biomed Eng; 2014 Dec; 61(12):2939-47. PubMed ID: 25020013 [TBL] [Abstract][Full Text] [Related]
15. Control-Oriented Model With Intra-Patient Variations for an Artificial Pancreas. Moscoso-Vasquez M; Colmegna P; Rosales N; Garelli F; Sanchez-Pena R IEEE J Biomed Health Inform; 2020 Sep; 24(9):2681-2689. PubMed ID: 31995506 [TBL] [Abstract][Full Text] [Related]
16. Assessment of Mitigation Methods to Reduce the Risk of Hypoglycemia for Announced Exercise in a Uni-hormonal Artificial Pancreas. Bertachi A; Beneyto A; Ramkissoon CM; Vehí J Diabetes Technol Ther; 2018 Apr; 20(4):285-295. PubMed ID: 29608335 [TBL] [Abstract][Full Text] [Related]
17. Simulation-Based Evaluation of Treatment Adjustment to Exercise in Type 1 Diabetes. Deichmann J; Bachmann S; Burckhardt MA; Szinnai G; Kaltenbach HM Front Endocrinol (Lausanne); 2021; 12():723812. PubMed ID: 34489869 [TBL] [Abstract][Full Text] [Related]
18. Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor. Finan DA; Dassau E; Breton MD; Patek SD; McCann TW; Kovatchev BP; Doyle FJ; Levy BL; Venugopalan R J Diabetes Sci Technol; 2015 Jun; 10(1):104-10. PubMed ID: 26134834 [TBL] [Abstract][Full Text] [Related]
19. A robust sliding mode controller with internal model for closed-loop artificial pancreas. Abu-Rmileh A; Garcia-Gabin W; Zambrano D Med Biol Eng Comput; 2010 Dec; 48(12):1191-201. PubMed ID: 20658267 [TBL] [Abstract][Full Text] [Related]
20. Impact of Accelerating Insulin on an Artificial Pancreas System Without Meal Announcement: An In Silico Examination. Colmegna P; Cengiz E; Garcia-Tirado J; Kraemer K; Breton MD J Diabetes Sci Technol; 2021 Jul; 15(4):833-841. PubMed ID: 32546001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]