These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27022869)

  • 1. Increased resistance to detachment of adherent microspheres and Bacillus spores subjected to a drying step.
    Faille C; Bihi I; Ronse A; Ronse G; Baudoin M; Zoueshtiagh F
    Colloids Surf B Biointerfaces; 2016 Jul; 143():293-300. PubMed ID: 27022869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobicity of abiotic surfaces governs droplets deposition and evaporation patterns.
    Richard E; Dubois T; Allion-Maurer A; Jha PK; Faille C
    Food Microbiol; 2020 Oct; 91():103538. PubMed ID: 32539949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The measurement of Bacillus mycoides spore adhesion using atomic force microscopy, simple counting methods, and a spinning disk technique.
    Bowen WR; Fenton AS; Lovitt RW; Wright CJ
    Biotechnol Bioeng; 2002 Jul; 79(2):170-9. PubMed ID: 12115433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the hydrophobic properties of latex microspheres and Bacillus spores. Influence of the particle size on the data obtained by the MATH method (microbial adhesion to hydrocarbons).
    Faille C; Lemy C; Allion-Maurer A; Zoueshtiagh F
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110398. PubMed ID: 31376688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adhesion of bacillus spores in relation to hydrophobicity.
    Rönner U; Husmark U; Henriksson A
    J Appl Bacteriol; 1990 Oct; 69(4):550-6. PubMed ID: 2292519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of mechanical vs. chemical action in the removal of adherent Bacillus spores during CIP procedures.
    Faille C; Bénézech T; Blel W; Ronse A; Ronse G; Clarisse M; Slomianny C
    Food Microbiol; 2013 Apr; 33(2):149-57. PubMed ID: 23200646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity.
    Faille C; Jullien C; Fontaine F; Bellon-Fontaine MN; Slomianny C; Benezech T
    Can J Microbiol; 2002 Aug; 48(8):728-38. PubMed ID: 12381029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the Impact of Germination and Sporulation Conditions on the Adhesion of Bacillus Spores to Glass and Stainless Steel by Fluid Dynamic Gauging.
    Xu Zhou K; Li N; Christie G; Wilson DI
    J Food Sci; 2017 Nov; 82(11):2614-2625. PubMed ID: 29125641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacillus anthracis and Bacillus subtilis spore surface properties and transport.
    Chen G; Driks A; Tawfiq K; Mallozzi M; Patil S
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):512-8. PubMed ID: 20074921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of the spore clumps during heat treatment increases the heat resistance of bacterial spores.
    Furukawa S; Narisawa N; Watanabe T; Kawarai T; Myozen K; Okazaki S; Ogihara H; Yamasaki M
    Int J Food Microbiol; 2005 Jun; 102(1):107-11. PubMed ID: 15925006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobicity of Bacillus and Clostridium spores.
    Wiencek KM; Klapes NA; Foegeding PM
    Appl Environ Microbiol; 1990 Sep; 56(9):2600-5. PubMed ID: 2275528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Friction and adhesion forces of Bacillus thuringiensis spores on planar surfaces in atmospheric systems.
    Kweon H; Yiacoumi S; Tsouris C
    Langmuir; 2011 Dec; 27(24):14975-81. PubMed ID: 22059743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat resistance of Bacillus spores when adhered to stainless steel and its relationship to spore hydrophobicity.
    Simmonds P; Mossel BL; Intaraphan T; Deeth HC
    J Food Prot; 2003 Nov; 66(11):2070-5. PubMed ID: 14627285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physico-chemical characterization of casein-modified surfaces and their influence on the adhesion of spores from a Geobacillus species.
    Han J; Seale RB; Silcock P; McQuillan AJ; Bremer PJ
    Biofouling; 2011 May; 27(5):459-66. PubMed ID: 21598124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution FESEM and TEM reveal bacterial spore attachment.
    Panessa-Warren BJ; Tortora GT; Warren JB
    Microsc Microanal; 2007 Aug; 13(4):251-66. PubMed ID: 17637074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces.
    Gómez-Suárez C; Busscher HJ; van der Mei HC
    Appl Environ Microbiol; 2001 Jun; 67(6):2531-7. PubMed ID: 11375160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of moisture equilibration time and medium on contact angles of bacterial spores.
    Eschlbeck E; Kulozik U
    J Microbiol Methods; 2017 Apr; 135():1-7. PubMed ID: 28132786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacillus and other spore-forming genera: variations in responses and mechanisms for survival.
    Checinska A; Paszczynski A; Burbank M
    Annu Rev Food Sci Technol; 2015; 6():351-69. PubMed ID: 25705935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability among Bacillus cereus strains in spore surface properties and influence on their ability to contaminate food surface equipment.
    Tauveron G; Slomianny C; Henry C; Faille C
    Int J Food Microbiol; 2006 Aug; 110(3):254-62. PubMed ID: 16793156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of high pressure carbon dioxide on the clumping of the bacterial spores.
    Furukawa S; Watanabe T; Koyama T; Hirata J; Narisawa N; Ogihara H; Yamasaki M
    Int J Food Microbiol; 2006 Jan; 106(1):95-8. PubMed ID: 16233924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.