These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27023033)

  • 21. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment.
    Rishel JP; Keillor ME; Arrigo LM; Baciak JE; Detwiler RS; Kernan WJ; Kirkham RR; Milbrath BD; Seifert A; Seifert CE; Smart JE
    Health Phys; 2016 May; 110(5):526-32. PubMed ID: 27023039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SIMULATION OF DOSE DISTRIBUTION IN VICINITY OF CLOUD OF CONTAMINATED AIR LEAKAGE FROM SEVERE NPP ACCIDENT.
    Klusoň J; Urban T
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):342-345. PubMed ID: 31711235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of an advanced radioactive airborne particle monitoring system for use in early warning networks.
    Baeza A; Corbacho JA; Caballero JM; Ontalba MA; Vasco J; Valencia D
    J Radiol Prot; 2017 Sep; 37(3):642-658. PubMed ID: 28555612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of an air sampler for a small unmanned aerial vehicle.
    Peräjärvi K; Lehtinen J; Pöllänen R; Toivonen H
    Radiat Prot Dosimetry; 2008; 132(3):328-33. PubMed ID: 19091809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.
    Šálek O; Matolín M; Gryc L
    J Environ Radioact; 2018 Feb; 182():101-107. PubMed ID: 29220714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparisons between a new point kernel-based scheme and the infinite plane source assumption method for radiation calculation of deposited airborne radionuclides from nuclear power plants.
    Zhang X; Efthimiou G; Wang Y; Huang M
    J Environ Radioact; 2018 Apr; 184-185():32-45. PubMed ID: 29334619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near-field investigation of the explosive dispersal of radioactive material based on a reconstructed spherical blast-wave flow.
    Hummel D; Ivan L
    J Environ Radioact; 2017 Jun; 172():30-42. PubMed ID: 28315824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overview of the Full-scale Radiological Dispersal Device Field Trials.
    Green AR; Erhardt L; Lebel L; Duke MJ; Jones T; White D; Quayle D
    Health Phys; 2016 May; 110(5):403-17. PubMed ID: 27023028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method for determining Am-241 activity for large area contamination.
    Wilhelm E; Arbor N; Gutierrez S; Ménard S; Nourreddine AM
    Appl Radiat Isot; 2017 Jan; 119():86-93. PubMed ID: 27866124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.
    Rawlins BG; Scheib C; Tyler AN; Beamish D
    J Environ Monit; 2012 Dec; 14(12):3086-93. PubMed ID: 23147566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of atmospherical radon to in-situ scintillation gamma spectrometry data.
    Klusoň J; Thinová L
    Appl Radiat Isot; 2011 Aug; 69(8):1143-5. PubMed ID: 21129988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a new aerosol monitoring system and its application in Fukushima nuclear accident related aerosol radioactivity measurement at the CTBT radionuclide station in Sidney of Canada.
    Zhang W; Bean M; Benotto M; Cheung J; Ungar K; Ahier B
    J Environ Radioact; 2011 Dec; 102(12):1065-9. PubMed ID: 21872373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation surveillance using an unmanned aerial vehicle.
    Pöllänen R; Toivonen H; Peräjärvi K; Karhunen T; Ilander T; Lehtinen J; Rintala K; Katajainen T; Niemelä J; Juusela M
    Appl Radiat Isot; 2009 Feb; 67(2):340-4. PubMed ID: 19046635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A MCREXS modelling approach for the simulation of a radiological dispersal device.
    Ivan L; Hummel D; Lebel L
    J Environ Radioact; 2018 Dec; 192():551-564. PubMed ID: 30142583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and calibration of a real-time airborne radioactivity monitor using direct gamma-ray spectrometry with two scintillation detectors.
    Casanovas R; Morant JJ; Salvadó M
    Appl Radiat Isot; 2014 Jul; 89():102-8. PubMed ID: 24607535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of counting efficiencies of a portable NaI detector using Monte Carlo simulation for thyroid measurement following nuclear accidents.
    Ha WH; Kim JK; Jin YW
    J Radiol Prot; 2017 Sep; 37(3):635-641. PubMed ID: 28474600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tests of HPGe- and scintillation-based backpack γ-radiation survey systems.
    Nilsson JM; Östlund K; Söderberg J; Mattsson S; Rääf C
    J Environ Radioact; 2014 Sep; 135():54-62. PubMed ID: 24776755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study on enhanced atmospheric dispersion of 41Ar at the Trombay site.
    Chatterjee MK; Divkar JK; Patil SS; Singh R; Pradeepkumar KS; Sharma DN
    Radiat Prot Dosimetry; 2013 Aug; 155(4):483-96. PubMed ID: 23413091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atmospheric plume progression as a function of time and distance from the release point for radioactive isotopes.
    Eslinger PW; Bowyer TW; Cameron IM; Hayes JC; Miley HS
    J Environ Radioact; 2015 Oct; 148():123-9. PubMed ID: 26151301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing UAV-based radiation sensor systems for aerial surveys.
    Lee C; Kim HR
    J Environ Radioact; 2019 Aug; 204():76-85. PubMed ID: 30986718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.