These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 27023063)

  • 1. Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure.
    Hayashi M; Nishiyama M; Kazayama Y; Toyota T; Harada Y; Takiguchi K
    Langmuir; 2016 Apr; 32(15):3794-802. PubMed ID: 27023063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure.
    Takiguchi K; Hayashi M; Kazayama Y; Toyota T; Harada Y; Nishiyama M
    Biol Pharm Bull; 2018; 41(3):288-293. PubMed ID: 29491204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological transformation of liposomes caused by assembly of encapsulated tubulin and determination of shape by microtubule-associated proteins (MAPs).
    Kaneko T; Itoh TJ; Hotani H
    J Mol Biol; 1998 Dec; 284(5):1671-81. PubMed ID: 9878378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure.
    Jortikka MO; Parkkinen JJ; Inkinen RI; Kärner J; Järveläinen HT; Nelimarkka LO; Tammi MI; Lammi MJ
    Arch Biochem Biophys; 2000 Feb; 374(2):172-80. PubMed ID: 10666295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the piezo-tolerance of cultured deep-sea eel cells on survival rates, cell proliferation, and cytoskeletal structures.
    Koyama S; Kobayashi H; Inoue A; Miwa T; Aizawa M
    Extremophiles; 2005 Dec; 9(6):449-60. PubMed ID: 16082498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Misato Controls Mitotic Microtubule Generation by Stabilizing the TCP-1 Tubulin Chaperone Complex [corrected].
    Palumbo V; Pellacani C; Heesom KJ; Rogala KB; Deane CM; Mottier-Pavie V; Gatti M; Bonaccorsi S; Wakefield JG
    Curr Biol; 2015 Jun; 25(13):1777-83. PubMed ID: 26096973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrostatic pressure has different effects on the assembly of tubulin, actin, myosin II, vinculin, talin, vimentin, and cytokeratin in mammalian tissue cells.
    Crenshaw HC; Allen JA; Skeen V; Harris A; Salmon ED
    Exp Cell Res; 1996 Sep; 227(2):285-97. PubMed ID: 8831567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sedimentation velocity analyses of the effect of hydrostatic pressure on the 30 S microtubule protein oligomer.
    Marcum JM; Borisy GG
    J Biol Chem; 1978 Apr; 253(8):2852-7. PubMed ID: 564909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of hydrostatic pressure-induced changes on the cytoskeleton and on the regulation of gene expression in pheochromocytoma (PC-12) cells.
    Wilson RG; Zimmerman S; Zimmerman AM
    Cell Biol Int; 2001; 25(7):667-77. PubMed ID: 11448106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protrusive growth from giant liposomes driven by actin polymerization.
    Miyata H; Nishiyama S; Akashi K; Kinosita K
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2048-53. PubMed ID: 10051592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical analyses of morphological and topological transformation of liposomes.
    Hotani H; Inaba T; Nomura F; Takeda S; Takiguchi K; Itoh TJ; Umeda T; Ishijima A
    Biosystems; 2003 Sep; 71(1-2):93-100. PubMed ID: 14568210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylation of alpha-tubilin in different bovine cell types: implications for microtubule dynamics in interphase and mitosis.
    Wolf KW; Spanel-Borowski K
    Cell Biol Int; 1995 Jan; 19(1):43-52. PubMed ID: 7613510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule depolymerization at high pressure.
    Nishiyama M; Shimoda Y; Hasumi M; Kimura Y; Terazima M
    Ann N Y Acad Sci; 2010 Feb; 1189():86-90. PubMed ID: 20233372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots.
    de Almeida Engler J; Van Poucke K; Karimi M; De Groodt R; Gheysen G; Engler G; Gheysen G
    Plant J; 2004 Apr; 38(1):12-26. PubMed ID: 15053756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of natural product microtubule stabilizers on microtubule assembly: single agent and combination studies with taxol, epothilone B, and discodermolide.
    Gertsch J; Meier S; Müller M; Altmann KH
    Chembiochem; 2009 Jan; 10(1):166-75. PubMed ID: 19058273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules.
    Volkov VA; Grissom PM; Arzhanik VK; Zaytsev AV; Renganathan K; McClure-Begley T; Old WM; Ahn N; McIntosh JR
    J Cell Biol; 2015 Jun; 209(6):813-28. PubMed ID: 26101217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol.
    Mikhailov A; Gundersen GG
    Cell Motil Cytoskeleton; 1998; 41(4):325-40. PubMed ID: 9858157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and maintenance of tubular membrane projections require mechanical force, but their elongation and shortening do not require additional force.
    Inaba T; Ishijima A; Honda M; Nomura F; Takiguchi K; Hotani H
    J Mol Biol; 2005 Apr; 348(2):325-33. PubMed ID: 15811371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstituting dynamic microtubule polymerization regulation by TOG domain proteins.
    Al-Bassam J
    Methods Enzymol; 2014; 540():131-48. PubMed ID: 24630105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-pressure microscopy for tracking dynamic properties of molecular machines.
    Nishiyama M
    Biophys Chem; 2017 Dec; 231():71-78. PubMed ID: 28433265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.