BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 27023236)

  • 1. Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae.
    Du ZY; Benning C
    Subcell Biochem; 2016; 86():179-205. PubMed ID: 27023236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress-induced neutral lipid biosynthesis in microalgae - Molecular, cellular and physiological insights.
    Zienkiewicz K; Du ZY; Ma W; Vollheyde K; Benning C
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1269-1281. PubMed ID: 26883557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation.
    Merchant SS; Kropat J; Liu B; Shaw J; Warakanont J
    Curr Opin Biotechnol; 2012 Jun; 23(3):352-63. PubMed ID: 22209109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica.
    Liu B; Vieler A; Li C; Daniel Jones A; Benning C
    Bioresour Technol; 2013 Oct; 146():310-316. PubMed ID: 23948268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis.
    Nobusawa T; Hori K; Mori H; Kurokawa K; Ohta H
    Plant J; 2017 May; 90(3):547-559. PubMed ID: 28218992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.
    La Russa M; Bogen C; Uhmeyer A; Doebbe A; Filippone E; Kruse O; Mussgnug JH
    J Biotechnol; 2012 Nov; 162(1):13-20. PubMed ID: 22542934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.
    Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H
    Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii.
    Li X; Jonikas MC
    Subcell Biochem; 2016; 86():223-47. PubMed ID: 27023238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism and challenges in commercialisation of algal biofuels.
    Singh A; Nigam PS; Murphy JD
    Bioresour Technol; 2011 Jan; 102(1):26-34. PubMed ID: 20609580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae.
    Imamura S; Kawase Y; Kobayashi I; Shimojima M; Ohta H; Tanaka K
    Plant Signal Behav; 2016; 11(3):e1149285. PubMed ID: 26855321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production.
    Ma Y; Wang Z; Yu C; Yin Y; Zhou G
    Bioresour Technol; 2014 Sep; 167():503-9. PubMed ID: 25013933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgal growth with intracellular phosphorus for achieving high biomass growth rate and high lipid/triacylglycerol content simultaneously.
    Wu YH; Yu Y; Hu HY
    Bioresour Technol; 2015 Sep; 192():374-81. PubMed ID: 26056779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An increase in the membrane lipids recycling by PDAT overexpression stimulates the accumulation of triacylglycerol in Nannochloropsis gaditana.
    Fattore N; Bucci F; Bellan A; Bossi S; Maffei ME; Morosinotto T
    J Biotechnol; 2022 Sep; 357():28-37. PubMed ID: 35931238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular Organization of Triacylglycerol Biosynthesis in Microalgae.
    Xu C; Andre C; Fan J; Shanklin J
    Subcell Biochem; 2016; 86():207-21. PubMed ID: 27023237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages.
    Gong Y; Guo X; Wan X; Liang Z; Jiang M
    J Basic Microbiol; 2013 Jan; 53(1):29-36. PubMed ID: 22581481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Edible oils from microalgae: insights in TAG accumulation.
    Klok AJ; Lamers PP; Martens DE; Draaisma RB; Wijffels RH
    Trends Biotechnol; 2014 Oct; 32(10):521-8. PubMed ID: 25168414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algal biofuels: challenges and opportunities.
    Leite GB; Abdelaziz AE; Hallenbeck PC
    Bioresour Technol; 2013 Oct; 145():134-41. PubMed ID: 23499181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biodiesel from microalgae: ways of increasing effectiveness of lipids accumulation by genetic engineering methods].
    Korkhovoĭ VI; Blium IaB
    Tsitol Genet; 2013; 47(6):30-42. PubMed ID: 24437196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein.
    Misra N; Panda PK
    OMICS; 2013 Apr; 17(4):173-86. PubMed ID: 23496307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated response of photosynthesis, carbon assimilation, and triacylglycerol accumulation to nitrogen starvation in the marine microalgae Isochrysis zhangjiangensis (Haptophyta).
    Wang HT; Meng YY; Cao XP; Ai JN; Zhou JN; Xue S; Wang WL
    Bioresour Technol; 2015 Feb; 177():282-8. PubMed ID: 25496949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.