These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
407 related articles for article (PubMed ID: 27023238)
1. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii. Li X; Jonikas MC Subcell Biochem; 2016; 86():223-47. PubMed ID: 27023238 [TBL] [Abstract][Full Text] [Related]
2. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Li-Beisson Y; Beisson F; Riekhof W Plant J; 2015 May; 82(3):504-522. PubMed ID: 25660108 [TBL] [Abstract][Full Text] [Related]
3. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants. Terashima M; Freeman ES; Jinkerson RE; Jonikas MC Plant J; 2015 Jan; 81(1):147-59. PubMed ID: 25267488 [TBL] [Abstract][Full Text] [Related]
4. Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica. Liu B; Vieler A; Li C; Daniel Jones A; Benning C Bioresour Technol; 2013 Oct; 146():310-316. PubMed ID: 23948268 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. Tsai CH; Zienkiewicz K; Amstutz CL; Brink BG; Warakanont J; Roston R; Benning C Plant J; 2015 Aug; 83(4):650-60. PubMed ID: 26096381 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. La Russa M; Bogen C; Uhmeyer A; Doebbe A; Filippone E; Kruse O; Mussgnug JH J Biotechnol; 2012 Nov; 162(1):13-20. PubMed ID: 22542934 [TBL] [Abstract][Full Text] [Related]
8. Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae. Du ZY; Benning C Subcell Biochem; 2016; 86():179-205. PubMed ID: 27023236 [TBL] [Abstract][Full Text] [Related]
9. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. Siaut M; Cuiné S; Cagnon C; Fessler B; Nguyen M; Carrier P; Beyly A; Beisson F; Triantaphylidès C; Li-Beisson Y; Peltier G BMC Biotechnol; 2011 Jan; 11():7. PubMed ID: 21255402 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Iwai M; Ikeda K; Shimojima M; Ohta H Plant Biotechnol J; 2014 Aug; 12(6):808-19. PubMed ID: 24909748 [TBL] [Abstract][Full Text] [Related]
11. Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii. Hidayati NA; Yamada-Oshima Y; Iwai M; Yamano T; Kajikawa M; Sakurai N; Suda K; Sesoko K; Hori K; Obayashi T; Shimojima M; Fukuzawa H; Ohta H Plant J; 2019 Nov; 100(3):610-626. PubMed ID: 31350858 [TBL] [Abstract][Full Text] [Related]
12. A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Li X; Moellering ER; Liu B; Johnny C; Fedewa M; Sears BB; Kuo MH; Benning C Plant Cell; 2012 Nov; 24(11):4670-86. PubMed ID: 23161887 [TBL] [Abstract][Full Text] [Related]
13. Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii. Deng X; Cai J; Li Y; Fei X Biotechnol Lett; 2014 Nov; 36(11):2199-208. PubMed ID: 24966045 [TBL] [Abstract][Full Text] [Related]
14. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037 [TBL] [Abstract][Full Text] [Related]
15. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae. Imamura S; Kawase Y; Kobayashi I; Shimojima M; Ohta H; Tanaka K Plant Signal Behav; 2016; 11(3):e1149285. PubMed ID: 26855321 [TBL] [Abstract][Full Text] [Related]
16. Galactolipid DGDG and Betaine Lipid DGTS Direct De Novo Synthesized Linolenate into Triacylglycerol in a Stress-Induced Starchless Mutant of Chlamydomonas reinhardtii. Yang M; Kong F; Xie X; Wu P; Chu Y; Cao X; Xue S Plant Cell Physiol; 2020 Apr; 61(4):851-862. PubMed ID: 32061132 [TBL] [Abstract][Full Text] [Related]
17. Reduction of PII signaling protein enhances lipid body production in Chlamydomonas reinhardtii. Zalutskaya Z; Kharatyan N; Forchhammer K; Ermilova E Plant Sci; 2015 Nov; 240():1-9. PubMed ID: 26475183 [TBL] [Abstract][Full Text] [Related]
18. Comparative proteomics using lipid over-producing or less-producing mutants unravels lipid metabolisms in Chlamydomonas reinhardtii. Choi YE; Hwang H; Kim HS; Ahn JW; Jeong WJ; Yang JW Bioresour Technol; 2013 Oct; 145():108-15. PubMed ID: 23582219 [TBL] [Abstract][Full Text] [Related]
19. TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Merchant SS; Kropat J; Liu B; Shaw J; Warakanont J Curr Opin Biotechnol; 2012 Jun; 23(3):352-63. PubMed ID: 22209109 [TBL] [Abstract][Full Text] [Related]
20. LIP4 Is Involved in Triacylglycerol Degradation in Chlamydomonas reinhardtii. Warakanont J; Li-Beisson Y; Benning C Plant Cell Physiol; 2019 Jun; 60(6):1250-1259. PubMed ID: 30796452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]