These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27023245)

  • 61. Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography-mass spectrometry.
    Ruther J
    J Chromatogr A; 2000 Aug; 890(2):313-9. PubMed ID: 11009035
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A novel approach for real-time monitoring of leaf wounding responses demonstrates unprecedently fast and high emissions of volatiles from cut leaves.
    Rasulov B; Talts E; Niinemets Ü
    Plant Sci; 2019 Jun; 283():256-265. PubMed ID: 31128696
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Metabolic changes in Citrus leaf volatiles in response to environmental stress.
    Asai T; Matsukawa T; Kajiyama S
    J Biosci Bioeng; 2016 Feb; 121(2):235-41. PubMed ID: 26188419
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?
    Holopainen JK
    Tree Physiol; 2011 Dec; 31(12):1356-77. PubMed ID: 22112623
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Real-time monitoring of herbivore induced volatile emissions in the field.
    Schaub A; Blande JD; Graus M; Oksanen E; Holopainen JK; Hansel A
    Physiol Plant; 2010 Feb; 138(2):123-33. PubMed ID: 20002328
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Emission Timetable and Quantitative Patterns of Wound-Induced Volatiles Across Different Leaf Damage Treatments in Aspen (Populus Tremula).
    Portillo-Estrada M; Kazantsev T; Talts E; Tosens T; Niinemets Ü
    J Chem Ecol; 2015 Dec; 41(12):1105-17. PubMed ID: 26546474
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Green leaf volatiles, fire and nonanoic acid activate MAPkinases in the model grass species Lolium temulentum.
    Dombrowski JE; Martin RC
    BMC Res Notes; 2014 Nov; 7():807. PubMed ID: 25403248
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Secondary organic aerosol from aqueous reactions of green leaf volatiles with organic triplet excited states and singlet molecular oxygen.
    Richards-Henderson NK; Pham AT; Kirk BB; Anastasio C
    Environ Sci Technol; 2015 Jan; 49(1):268-76. PubMed ID: 25426693
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multiple functions of inducible plant volatiles.
    Holopainen JK
    Trends Plant Sci; 2004 Nov; 9(11):529-33. PubMed ID: 15501177
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification of (Z)-3:(E)-2-Hexenal Isomerases Essential to the Production of the Leaf Aldehyde in Plants.
    Kunishima M; Yamauchi Y; Mizutani M; Kuse M; Takikawa H; Sugimoto Y
    J Biol Chem; 2016 Jul; 291(27):14023-14033. PubMed ID: 27129773
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Priming of antiherbivore defensive responses in plants.
    Kim J; Felton GW
    Insect Sci; 2013 Jun; 20(3):273-85. PubMed ID: 23955880
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization of a new (Z)-3:(E)-2-hexenal isomerase from tea (Camellia sinensis) involved in the conversion of (Z)-3-hexenal to (E)-2-hexenal.
    Chen C; Yu F; Wen X; Chen S; Wang K; Wang F; Zhang J; Wu Y; He P; Tu Y; Li B
    Food Chem; 2022 Jul; 383():132463. PubMed ID: 35183969
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Orthonasal and retronasal perception of some green leaf volatiles used in beverage flavors.
    King BM; Arents P; Duineveld CA; Meyners M; Schroff SI; Soekhai ST
    J Agric Food Chem; 2006 Apr; 54(7):2664-70. PubMed ID: 16569059
    [TBL] [Abstract][Full Text] [Related]  

  • 74. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature.
    Loreto F; Barta C; Brilli F; Nogues I
    Plant Cell Environ; 2006 Sep; 29(9):1820-8. PubMed ID: 16913871
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Does Enzymatic Hydrolysis of Glycosidically Bound Volatile Compounds Really Contribute to the Formation of Volatile Compounds During the Oolong Tea Manufacturing Process?
    Gui J; Fu X; Zhou Y; Katsuno T; Mei X; Deng R; Xu X; Zhang L; Dong F; Watanabe N; Yang Z
    J Agric Food Chem; 2015 Aug; 63(31):6905-14. PubMed ID: 26212085
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Specific response to herbivore-induced de novo synthesized plant volatiles provides reliable information for host plant selection in a moth.
    Zakir A; Bengtsson M; Sadek MM; Hansson BS; Witzgall P; Anderson P
    J Exp Biol; 2013 Sep; 216(Pt 17):3257-63. PubMed ID: 23737555
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds.
    Matsui K
    Curr Opin Plant Biol; 2016 Aug; 32():24-30. PubMed ID: 27281633
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Green Leaf Volatile (Z)-3-Hexenyl Acetate Is Differently Emitted by Two Varieties of
    Frontini A; De Bellis L; Luvisi A; Blando F; Allah SM; Dimita R; Mininni C; Accogli R; Negro C
    Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501344
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize.
    Yan ZG; Wang CZ
    Phytochemistry; 2006 Jan; 67(1):34-42. PubMed ID: 16310233
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Plant volatiles.
    Baldwin IT
    Curr Biol; 2010 May; 20(9):R392-7. PubMed ID: 20462477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.