BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27023279)

  • 1. Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations.
    Wang Z; Wang D; Li B; Wang J; Li T; Zhang M; Huang Y; Shen C
    Environ Pollut; 2016 Jun; 213():698-709. PubMed ID: 27023279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humic acid induced weak attachment of fullerene nC
    Wang Z; Li T; Shen C; Shang J; Shi K; Zhang Y; Li B
    J Contam Hydrol; 2020 May; 231():103630. PubMed ID: 32169749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of surface heterogeneities on reversibility of fullerene (nC60) nanoparticle attachment in saturated porous media.
    Shen C; Zhang M; Zhang S; Wang Z; Zhang H; Li B; Huang Y
    J Hazard Mater; 2015 Jun; 290():60-8. PubMed ID: 25746565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands.
    Wang Y; Li Y; Pennell KD
    Environ Toxicol Chem; 2008 Sep; 27(9):1860-7. PubMed ID: 19086205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous Detachment of Colloids from Primary Energy Minima by Brownian Diffusion.
    Wang Z; Jin Y; Shen C; Li T; Huang Y; Li B
    PLoS One; 2016; 11(1):e0147368. PubMed ID: 26784446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media.
    Cai L; Tong M; Ma H; Kim H
    Environ Sci Technol; 2013 Jun; 47(11):5703-10. PubMed ID: 23662648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling.
    Zhang L; Hou L; Wang L; Kan AT; Chen W; Tomson MB
    Environ Sci Technol; 2012 Jul; 46(13):7230-8. PubMed ID: 22681192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and retention of fullerene (nC60) nanoparticles in unsaturated porous media: effects of solution chemistry and solid phase coating.
    Chen L; Sabatini DA; Kibbey TC
    J Contam Hydrol; 2012 Sep; 138-139():104-12. PubMed ID: 22858671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions.
    Li Y; Wang Y; Pennell KD; Abriola LM
    Environ Sci Technol; 2008 Oct; 42(19):7174-80. PubMed ID: 18939543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60).
    Qu X; Alvarez PJ; Li Q
    Environ Sci Technol; 2012 Dec; 46(24):13455-62. PubMed ID: 23157776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and retention of nanoscale C60 aggregates in water-saturated porous media.
    Wang Y; Li Y; Fortner JD; Hughes JB; Abriola LM; Pennell KD
    Environ Sci Technol; 2008 May; 42(10):3588-94. PubMed ID: 18546694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size.
    Wang C; Bobba AD; Attinti R; Shen C; Lazouskaya V; Wang LP; Jin Y
    Environ Sci Technol; 2012 Jul; 46(13):7151-8. PubMed ID: 22642719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces.
    Shen C; Wang F; Li B; Jin Y; Wang LP; Huang Y
    Langmuir; 2012 Oct; 28(41):14681-92. PubMed ID: 23006065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors controlling transport of graphene oxide nanoparticles in saturated sand columns.
    Qi Z; Zhang L; Wang F; Hou L; Chen W
    Environ Toxicol Chem; 2014 May; 33(5):998-1004. PubMed ID: 24453090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deposition and release of carboxylated graphene in saturated porous media: Effect of transient solution chemistry.
    He J; Wang D; Zhang W; Zhou D
    Chemosphere; 2019 Nov; 235():643-650. PubMed ID: 31276877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contaminant-mobilizing capability of fullerene nanoparticles (nC60): Effect of solvent-exchange process in nC60 formation.
    Wang L; Fortner JD; Hou L; Zhang C; Kan AT; Tomson MB; Chen W
    Environ Toxicol Chem; 2013 Feb; 32(2):329-36. PubMed ID: 23172734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant Mobility of Novel Heteroaggregates of Montmorillonite Microparticles with Nanoscale Zerovalent Irons in Saturated Porous Media.
    Shen C; Teng J; Zheng W; Liu D; Ma K
    Toxics; 2022 Jun; 10(6):. PubMed ID: 35736940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.