These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27023383)

  • 1. Second-generation ethanol production from elephant grass at high total solids.
    Menegol D; Fontana RC; Dillon AJ; Camassola M
    Bioresour Technol; 2016 Jul; 211():280-90. PubMed ID: 27023383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion.
    Scholl AL; Menegol D; Pitarelo AP; Fontana RC; Zandoná Filho A; Ramos LP; Dillon AJ; Camassola M
    Bioresour Technol; 2015 Sep; 192():228-37. PubMed ID: 26038327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of elephant grass (Pennisetum purpureum) acid hydrolysate for microbial oil production by Trichosporon cutaneum.
    Chen XF; Huang C; Xiong L; Wang B; Qi GX; Lin XQ; Wang C; Chen XD
    Prep Biochem Biotechnol; 2016 Oct; 46(7):704-8. PubMed ID: 26771212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient process for ethanol production from Thai Mission grass (Pennisetum polystachion).
    Prasertwasu S; Khumsupan D; Komolwanich T; Chaisuwan T; Luengnaruemitchai A; Wongkasemjit S
    Bioresour Technol; 2014 Jul; 163():152-9. PubMed ID: 24811442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated production of second generation ethanol and lactic acid from steam-exploded elephant grass.
    Montipó S; Ballesteros I; Fontana RC; Liu S; Martins AF; Ballesteros M; Camassola M
    Bioresour Technol; 2018 Feb; 249():1017-1024. PubMed ID: 30045483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignocellulosic butanol production from Napier grass using semi-simultaneous saccharification fermentation.
    He CR; Kuo YY; Li SY
    Bioresour Technol; 2017 May; 231():101-108. PubMed ID: 28208065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass.
    Nascimento SA; Rezende CA
    Carbohydr Polym; 2018 Jan; 180():38-45. PubMed ID: 29103518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioethanol Production from Soybean Residue via Separate Hydrolysis and Fermentation.
    Nguyen TH; Ra CH; Sunwoo IY; Sukwong P; Jeong GT; Kim SK
    Appl Biochem Biotechnol; 2018 Feb; 184(2):513-523. PubMed ID: 28756542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.
    Schell DJ; Dowe N; Chapeaux A; Nelson RS; Jennings EW
    Bioresour Technol; 2016 Apr; 205():153-8. PubMed ID: 26826954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass.
    Lu Y; Wang Y; Xu G; Chu J; Zhuang Y; Zhang S
    Appl Biochem Biotechnol; 2010 Jan; 160(2):360-9. PubMed ID: 18626577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of producing ethanol from food waste.
    Kim JH; Lee JC; Pak D
    Waste Manag; 2011; 31(9-10):2121-5. PubMed ID: 21596551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.
    Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB
    Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green coconut mesocarp pretreated by an alkaline process as raw material for bioethanol production.
    Soares J; Demeke MM; Foulquié-Moreno MR; Van de Velde M; Verplaetse A; Fernandes AA; Thevelein JM; Fernandes PM
    Bioresour Technol; 2016 Sep; 216():744-53. PubMed ID: 27295252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus.
    Yang XY; Huang C; Guo HJ; Xiong L; Li YY; Zhang HR; Chen XD
    J Appl Microbiol; 2013 Oct; 115(4):995-1002. PubMed ID: 23890373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production.
    Pancha I; Chokshi K; Maurya R; Bhattacharya S; Bachani P; Mishra S
    Bioresour Technol; 2016 Mar; 204():9-16. PubMed ID: 26771924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production.
    Tan IS; Lam MK; Lee KT
    Carbohydr Polym; 2013 Apr; 94(1):561-6. PubMed ID: 23544575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar and ethanol production from woody biomass via supercritical water hydrolysis in a continuous pilot-scale system using acid catalyst.
    Jeong H; Park YC; Seong YJ; Lee SM
    Bioresour Technol; 2017 Dec; 245(Pt A):351-357. PubMed ID: 28898830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of different chemical pretreatments of elephant grass (Pennisetum purpureum, Schum.) used as a substrate for cellulase and xylanase production in submerged cultivation.
    Menegol D; Scholl AL; Dillon AJ; Camassola M
    Bioprocess Biosyst Eng; 2016 Sep; 39(9):1455-64. PubMed ID: 27164962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.
    Chu Q; Li X; Ma B; Xu Y; Ouyang J; Zhu J; Yu S; Yong Q
    Bioresour Technol; 2012 Nov; 123():699-702. PubMed ID: 22975252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.