These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 27023385)
41. Performance and microbial characteristics of biomass in a full-scale aerobic granular sludge wastewater treatment plant. Świątczak P; Cydzik-Kwiatkowska A Environ Sci Pollut Res Int; 2018 Jan; 25(2):1655-1669. PubMed ID: 29101689 [TBL] [Abstract][Full Text] [Related]
42. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge. Wichern M; Lübken M; Horn H Water Sci Technol; 2008; 58(6):1199-206. PubMed ID: 18845857 [TBL] [Abstract][Full Text] [Related]
43. Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays. Weissbrodt DG; Maillard J; Brovelli A; Chabrelie A; May J; Holliger C Biotechnol Bioeng; 2014 Dec; 111(12):2421-35. PubMed ID: 24975745 [TBL] [Abstract][Full Text] [Related]
44. [Denitrifying phosphate uptake of biological phosphorous removal granular sludge in SBR]. Liu XY; Zhao HM; Peng DC; Sui XJ Huan Jing Ke Xue; 2008 Aug; 29(8):2254-9. PubMed ID: 18839581 [TBL] [Abstract][Full Text] [Related]
45. Granule formation mechanisms within an aerobic wastewater system for phosphorus removal. Barr JJ; Cook AE; Bond PL Appl Environ Microbiol; 2010 Nov; 76(22):7588-97. PubMed ID: 20851963 [TBL] [Abstract][Full Text] [Related]
46. [Formation and reaction mechanism of simultaneous nitrogen and phosphorus removal by aerobic granular sludge]. Gao JF; Chen RN; Su K; Zhang Q; Peng YZ Huan Jing Ke Xue; 2010 Apr; 31(4):1021-9. PubMed ID: 20527186 [TBL] [Abstract][Full Text] [Related]
47. [Effects of organic loading rate on the cultivation and characteristic of granular sludge with phosphorus removal]. Zhang XL; Liu S; Chen X Huan Jing Ke Xue; 2011 Jul; 32(7):2030-5. PubMed ID: 21922826 [TBL] [Abstract][Full Text] [Related]
48. Consistency between the metabolic performance of two aerobic granular sludge systems and the functional groups of bacteria detected by amplicon sequencing. Barrón-Hernández LM; Gonzaga-Galeana VE; Colín-Cruz A; Esparza-Soto M; Lucero-Chávez M; Bâ K; Fall C Environ Sci Pollut Res Int; 2022 Nov; 29(55):83512-83525. PubMed ID: 35768715 [TBL] [Abstract][Full Text] [Related]
49. Performance of enhanced biological phosphorus removal and population dynamics of phosphorus accumulating organisms in sludge-shifting sequencing batch reactors. Pan Y; Ruan W; Huang Y; Chen Q; Miao H; Wang T Water Sci Technol; 2018 Sep; 78(3-4):886-895. PubMed ID: 30252666 [TBL] [Abstract][Full Text] [Related]
50. Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Gao D; Liu L; Liang H; Wu WM Crit Rev Biotechnol; 2011 Jun; 31(2):137-52. PubMed ID: 20919817 [TBL] [Abstract][Full Text] [Related]
51. Performance of aerobic granular sludge at variable circulation rate in anaerobic-aerobic conditions. Harun H; Anuar AN; Ujang Z; Rosman NH; Othman I Water Sci Technol; 2014; 69(11):2252-7. PubMed ID: 24901619 [TBL] [Abstract][Full Text] [Related]
52. [Formation of the phosphorus removal granular sludge and phosphorus removal characteristics of the anaerobic/oxic and anaerobic/anoxic/oxic granular sludge process in SBR]. Liu XY; Jiang YH; Guo C; Peng DC Huan Jing Ke Xue; 2009 Sep; 30(9):2655-60. PubMed ID: 19927821 [TBL] [Abstract][Full Text] [Related]
53. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Yilmaz G; Lemaire R; Keller J; Yuan Z Biotechnol Bioeng; 2008 Jun; 100(3):529-41. PubMed ID: 18098318 [TBL] [Abstract][Full Text] [Related]
54. Simultaneous nitrification, denitrification and phosphorus removal in aerobic granular sequencing batch reactors with high aeration intensity: Impact of aeration time. He Q; Chen L; Zhang S; Wang L; Liang J; Xia W; Wang H; Zhou J Bioresour Technol; 2018 Sep; 263():214-222. PubMed ID: 29747098 [TBL] [Abstract][Full Text] [Related]
55. Kinetic model of a granular sludge SBR: influences on nutrient removal. de Kreuk MK; Picioreanu C; Hosseini M; Xavier JB; van Loosdrecht MC Biotechnol Bioeng; 2007 Jul; 97(4):801-15. PubMed ID: 17177197 [TBL] [Abstract][Full Text] [Related]
56. Short-sludge age EBPR process - Microbial and biochemical process characterisation during reactor start-up and operation. Valverde-Pérez B; Wágner DS; Lóránt B; Gülay A; Smets BF; Plósz BG Water Res; 2016 Nov; 104():320-329. PubMed ID: 27570133 [TBL] [Abstract][Full Text] [Related]
57. Development of granular sludge for textile wastewater treatment. Muda K; Aris A; Salim MR; Ibrahim Z; Yahya A; van Loosdrecht MC; Ahmad A; Nawahwi MZ Water Res; 2010 Aug; 44(15):4341-50. PubMed ID: 20580402 [TBL] [Abstract][Full Text] [Related]
58. Biological phosphorus removal in seawater-adapted aerobic granular sludge. de Graaff DR; van Loosdrecht MCM; Pronk M Water Res; 2020 Apr; 172():115531. PubMed ID: 32004912 [TBL] [Abstract][Full Text] [Related]
59. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor. Wu CY; Peng YZ; Wang RD; Zhou YX Chemosphere; 2012 Feb; 86(8):767-73. PubMed ID: 22130123 [TBL] [Abstract][Full Text] [Related]
60. Formation of aerobic granules for the treatment of real and low-strength municipal wastewater using a sequencing batch reactor operated at constant volume. Derlon N; Wagner J; da Costa RHR; Morgenroth E Water Res; 2016 Nov; 105():341-350. PubMed ID: 27639343 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]