BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 27023428)

  • 1. Amplification, Next-generation Sequencing, and Genomic DNA Mapping of Retroviral Integration Sites.
    Serrao E; Cherepanov P; Engelman AN
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput method for cloning and sequencing human immunodeficiency virus type 1 integration sites.
    Kim S; Kim Y; Liang T; Sinsheimer JS; Chow SA
    J Virol; 2006 Nov; 80(22):11313-21. PubMed ID: 16971446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analytical pipeline for identifying and mapping the integration sites of HIV and other retroviruses.
    Wells DW; Guo S; Shao W; Bale MJ; Coffin JM; Hughes SH; Wu X
    BMC Genomics; 2020 Mar; 21(1):216. PubMed ID: 32151239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive single-genome sequencing: accurate, targeted, next generation sequencing of HIV-1 RNA.
    Boltz VF; Rausch J; Shao W; Hattori J; Luke B; Maldarelli F; Mellors JW; Kearney MF; Coffin JM
    Retrovirology; 2016 Dec; 13(1):87. PubMed ID: 27998286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying integration sites of the HIV-1 genome with intact and aberrant ends through deep sequencing.
    Ode H; Kobayashi A; Matsuda M; Hachiya A; Imahashi M; Yokomaku Y; Iwatani Y
    J Virol Methods; 2019 May; 267():59-65. PubMed ID: 30857886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VISA--Vector Integration Site Analysis server: a web-based server to rapidly identify retroviral integration sites from next-generation sequencing.
    Hocum JD; Battrell LR; Maynard R; Adair JE; Beard BC; Rawlings DJ; Kiem HP; Miller DG; Trobridge GD
    BMC Bioinformatics; 2015 Jul; 16(1):212. PubMed ID: 26150117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR).
    Schmidt M; Schwarzwaelder K; Bartholomae C; Zaoui K; Ball C; Pilz I; Braun S; Glimm H; von Kalle C
    Nat Methods; 2007 Dec; 4(12):1051-7. PubMed ID: 18049469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanopore sequencing as a scalable, cost-effective platform for analyzing polyclonal vector integration sites following clinical T cell therapy.
    Zhang P; Ganesamoorthy D; Nguyen SH; Au R; Coin LJ; Tey SK
    J Immunother Cancer; 2020 Jun; 8(1):. PubMed ID: 32527930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital Restriction Enzyme Analysis of Methylation (DREAM).
    Jelinek J; Lee JT; Cesaroni M; Madzo J; Liang S; Lu Y; Issa JJ
    Methods Mol Biol; 2018; 1708():247-265. PubMed ID: 29224148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sites of retroviral DNA integration: From basic research to clinical applications.
    Serrao E; Engelman AN
    Crit Rev Biochem Mol Biol; 2016; 51(1):26-42. PubMed ID: 26508664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome.
    O'Malley RC; Alonso JM; Kim CJ; Leisse TJ; Ecker JR
    Nat Protoc; 2007; 2(11):2910-7. PubMed ID: 18007627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome.
    Miyazato P; Katsuya H; Fukuda A; Uchiyama Y; Matsuo M; Tokunaga M; Hino S; Nakao M; Satou Y
    Sci Rep; 2016 Jun; 6():28324. PubMed ID: 27321866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations.
    Zhou S; Jones C; Mieczkowski P; Swanstrom R
    J Virol; 2015 Aug; 89(16):8540-55. PubMed ID: 26041299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genome-wide analysis of lentivector integration sites using targeted sequence capture and next generation sequencing technology.
    Ustek D; Sirma S; Gumus E; Arikan M; Cakiris A; Abaci N; Mathew J; Emrence Z; Azakli H; Cosan F; Cakar A; Parlak M; Kursun O
    Infect Genet Evol; 2012 Oct; 12(7):1349-54. PubMed ID: 22613802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples.
    Schmidt M; Hoffmann G; Wissler M; Lemke N; Müssig A; Glimm H; Williams DA; Ragg S; Hesemann CU; von Kalle C
    Hum Gene Ther; 2001 May; 12(7):743-9. PubMed ID: 11339891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and analysis of retroviral integration targets by solo long terminal repeat inverse PCR.
    Jin YF; Ishibashi T; Nomoto A; Masuda M
    J Virol; 2002 Jun; 76(11):5540-7. PubMed ID: 11991982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of a mouse mammary tumor virus integration site by retroviral LTR--arbitrary polymerase chain reaction.
    Casper C; Leib-Mösch C; Salmons B; Günzburg WH; Baumann G; Höfler H; Erfle V; Atkinson MJ
    Virus Res; 1998 Apr; 54(2):207-15. PubMed ID: 9696128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular indications for in vivo integration of the avian leukosis virus, subgroup J-long terminal repeat into the Marek's disease virus in experimentally dually-infected chickens.
    Davidson I; Borenshtain R; Kung HJ; Witter RL
    Virus Genes; 2002 Mar; 24(2):173-80. PubMed ID: 12018709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of HIV integration sites in infected host genomic DNA.
    Ciuffi A; Barr SD
    Methods; 2011 Jan; 53(1):39-46. PubMed ID: 20385239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIV Integration Site Analysis of Cellular Models of HIV Latency with a Probe-Enriched Next-Generation Sequencing Assay.
    Sunshine S; Kirchner R; Amr SS; Mansur L; Shakhbatyan R; Kim M; Bosque A; Siliciano RF; Planelles V; Hofmann O; Ho Sui S; Li JZ
    J Virol; 2016 May; 90(9):4511-4519. PubMed ID: 26912621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.