BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 27023506)

  • 1. Robust Synthesis of Ciprofloxacin-Capped Metallic Nanoparticles and Their Urease Inhibitory Assay.
    Nisar M; Khan SA; Qayum M; Khan A; Farooq U; Jaafar HZ; Zia-Ul-Haq M; Ali R
    Molecules; 2016 Mar; 21(4):411. PubMed ID: 27023506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties.
    Islam NU; Amin R; Shahid M; Amin M; Zaib S; Iqbal J
    BMC Complement Altern Med; 2017 May; 17(1):276. PubMed ID: 28535789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles.
    Jain N; Bhargava A; Rathi M; Dilip RV; Panwar J
    PLoS One; 2015; 10(7):e0134337. PubMed ID: 26226385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibacterial, anti-efflux, anti-biofilm, anti-slime (exopolysaccharide) production and urease inhibitory efficacies of novel synthesized gold nanoparticles coated Anthemis atropatana extract against multidrug- resistant Klebsiella pneumoniae strains.
    Khosravi M; Mirzaie A; Kashtali AB; Noorbazargan H
    Arch Microbiol; 2020 Oct; 202(8):2105-2115. PubMed ID: 32500253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity.
    Sadeghi B; Rostami A; Momeni SS
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():326-32. PubMed ID: 25022505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles' antibacterial properties.
    Chen MN; Chan CF; Huang SL; Lin YS
    J Sci Food Agric; 2019 May; 99(7):3693-3702. PubMed ID: 30663065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.
    Zhang Z; Wu Y; Wang Z; Zou X; Zhao Y; Sun L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():462-9. PubMed ID: 27612736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological changes of bacterial cells upon exposure of silver-silver chloride nanoparticles synthesized using Agrimonia pilosa.
    Patil MP; Seo YB; Kim GD
    Microb Pathog; 2018 Mar; 116():84-90. PubMed ID: 29339306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles.
    Hussain MA; Shah A; Jantan I; Shah MR; Tahir MN; Ahmad R; Bukhari SN
    Int J Nanomedicine; 2015; 10():2079-88. PubMed ID: 25844038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections.
    Kasithevar M; Periakaruppan P; Muthupandian S; Mohan M
    Microb Pathog; 2017 Jun; 107():327-334. PubMed ID: 28411059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallic nanoparticles augmented the antibacterial potency of Rhodomyrtus tomentosa acetone extract against Escherichia coli.
    Shankar S; Leejae S; Jaiswal L; Voravuthikunchai SP
    Microb Pathog; 2017 Jun; 107():181-184. PubMed ID: 28365322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved conductivity and antibacterial activity of poly(2-aminothiophenol)-silver nanocomposite against human pathogens.
    Boomi P; Anandha Raj J; Palaniappan SP; Poorani G; Selvam S; Gurumallesh Prabu H; Manisankar P; Jeyakanthan J; Langeswaran VK
    J Photochem Photobiol B; 2018 Jan; 178():323-329. PubMed ID: 29178993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial activity of silver nanoparticles synthesized from serine.
    Jayaprakash N; Judith Vijaya J; John Kennedy L; Priadharsini K; Palani P
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():316-322. PubMed ID: 25686955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach.
    Gopinath V; MubarakAli D; Priyadarshini S; Priyadharsshini NM; Thajuddin N; Velusamy P
    Colloids Surf B Biointerfaces; 2012 Aug; 96():69-74. PubMed ID: 22521683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles.
    Hussain MA; Shah A; Jantan I; Tahir MN; Shah MR; Ahmed R; Bukhari SN
    J Nanobiotechnology; 2014 Dec; 12():53. PubMed ID: 25468206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-efficient photocatalytic deprivation of methylene blue and biological activities of biogenic silver nanoparticles.
    Khan AU; Yuan Q; Wei Y; Khan ZU; Tahir K; Khan SU; Ahmad A; Khan S; Nazir S; Khan FU
    J Photochem Photobiol B; 2016 Jun; 159():49-58. PubMed ID: 27016719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties.
    Mohan S; Oluwafemi OS; George SC; Jayachandran VP; Lewu FB; Songca SP; Kalarikkal N; Thomas S
    Carbohydr Polym; 2014 Jun; 106():469-74. PubMed ID: 24721103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential.
    Patra JK; Baek KH
    Int J Nanomedicine; 2015; 10():7253-64. PubMed ID: 26664116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of uniform-sized chitosan/silver microspheres with antibacterial activities.
    An J; Ji Z; Wang D; Luo Q; Li X
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():33-41. PubMed ID: 24433884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin resistant ESBL producing bacteria.
    Rajivgandhi G; Maruthupandy M; Muneeswaran T; Ramachandran G; Manoharan N; Quero F; Anand M; Song JM
    Microb Pathog; 2019 Feb; 127():267-276. PubMed ID: 30550842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.