These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 27023543)

  • 1. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2016 Mar; 16(4):426. PubMed ID: 27023543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusion of smartphone motion sensors for physical activity recognition.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2014 Jun; 14(6):10146-76. PubMed ID: 24919015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the recognition of eating gestures using intergesture sequential dependencies.
    Ramos-Garcia RI; Muth ER; Gowdy JN; Hoover AW
    IEEE J Biomed Health Inform; 2015 May; 19(3):825-31. PubMed ID: 24919205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of a Smartphone-Based Fall Detection Application on Different Phones Worn on a Belt or in a Trouser Pocket.
    Vermeulen J; Willard S; Aguiar B; De Witte LP
    Assist Technol; 2015; 27(1):18-23. PubMed ID: 26132221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognizing complex upper extremity activities using body worn sensors.
    Lemmens RJ; Janssen-Potten YJ; Timmermans AA; Smeets RJ; Seelen HA
    PLoS One; 2015; 10(3):e0118642. PubMed ID: 25734641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of Daily Gestures with Wearable Inertial Rings and Bracelets.
    Moschetti A; Fiorini L; Esposito D; Dario P; Cavallo F
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27556473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Varying behavior of different window sizes on the classification of static and dynamic physical activities from a single accelerometer.
    Fida B; Bernabucci I; Bibbo D; Conforto S; Schmid M
    Med Eng Phys; 2015 Jul; 37(7):705-11. PubMed ID: 25983067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach.
    Margarito J; Helaoui R; Bianchi AM; Sartor F; Bonomi AG
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):788-96. PubMed ID: 26302509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A feasibility study on smartphone accelerometer-based recognition of household activities and influence of smartphone position.
    Della Mea V; Quattrin O; Parpinel M
    Inform Health Soc Care; 2017 Dec; 42(4):321-334. PubMed ID: 28005434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Activity Recognition Framework Deploying the Random Forest Classifier and A Single Optical Heart Rate Monitoring and Triaxial AccelerometerWrist-Band.
    Mehrang S; Pietilä J; Korhonen I
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29470385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daily wrist activity classification using a smart band.
    Nguyen ND; Truong PH; Jeong GM
    Physiol Meas; 2017 Aug; 38(9):L10-L16. PubMed ID: 28654423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Sliding Window Length in Indoor Human Motion Modes and Pose Pattern Recognition Based on Smartphone Sensors.
    Wang G; Li Q; Wang L; Wang W; Wu M; Liu T
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29912174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer.
    Barua A; Jiang X; Fuller D
    Biomed Eng Online; 2024 Feb; 23(1):21. PubMed ID: 38368358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity recognition with smartphone support.
    Guiry JJ; van de Ven P; Nelson J; Warmerdam L; Riper H
    Med Eng Phys; 2014 Jun; 36(6):670-5. PubMed ID: 24641812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realtime recognition of complex human daily activities using human motion and location data.
    Zhu C; Sheng W
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2422-30. PubMed ID: 22434793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition.
    Javed AR; Sarwar MU; Khan S; Iwendi C; Mittal M; Kumar N
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.