These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27023704)

  • 1. Three-Dimensional Reconstruction of Three-Way FRET Microscopy Improves Imaging of Multiple Protein-Protein Interactions.
    Scott BL; Hoppe AD
    PLoS One; 2016; 11(3):e0152401. PubMed ID: 27023704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells.
    Hoppe AD; Shorte SL; Swanson JA; Heintzmann R
    Biophys J; 2008 Jul; 95(1):400-18. PubMed ID: 18339754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarized fluorescence resonance energy transfer microscopy.
    Mattheyses AL; Hoppe AD; Axelrod D
    Biophys J; 2004 Oct; 87(4):2787-97. PubMed ID: 15454470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform total internal reflection fluorescence illumination enables live cell fluorescence resonance energy transfer microscopy.
    Lin J; Hoppe AD
    Microsc Microanal; 2013 Apr; 19(2):350-9. PubMed ID: 23472941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy.
    Vermeer JE; Van Munster EB; Vischer NO; Gadella TW
    J Microsc; 2004 May; 214(Pt 2):190-200. PubMed ID: 15102066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of Rab5 activity in living cells using FRET microscopy.
    Galperin E; Sorkin A
    Methods Enzymol; 2005; 403():119-34. PubMed ID: 16473582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
    Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW
    Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through.
    Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R
    Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-way FRET microscopy of multiple protein-protein interactions in live cells.
    Hoppe AD; Scott BL; Welliver TP; Straight SW; Swanson JA
    PLoS One; 2013; 8(6):e64760. PubMed ID: 23762252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells.
    Galperin E; Verkhusha VV; Sorkin A
    Nat Methods; 2004 Dec; 1(3):209-17. PubMed ID: 15782196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational approach to inferring cellular protein-binding affinities from quantitative fluorescence resonance energy transfer imaging.
    Mehta K; Hoppe AD; Kainkaryam R; Woolf PJ; Linderman JJ
    Proteomics; 2009 Dec; 9(23):5371-83. PubMed ID: 19834887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering FRET constructs using CFP and YFP.
    Shimozono S; Miyawaki A
    Methods Cell Biol; 2008; 85():381-93. PubMed ID: 18155471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells.
    Hoffmann C; Gaietta G; Bünemann M; Adams SR; Oberdorff-Maass S; Behr B; Vilardaga JP; Tsien RY; Ellisman MH; Lohse MJ
    Nat Methods; 2005 Mar; 2(3):171-6. PubMed ID: 15782185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting protein-protein interactions with CFP-YFP FRET by acceptor photobleaching.
    Karpova T; McNally JG
    Curr Protoc Cytom; 2006 Feb; Chapter 12():Unit12.7. PubMed ID: 18770833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DsRed as a potential FRET partner with CFP and GFP.
    Erickson MG; Moon DL; Yue DT
    Biophys J; 2003 Jul; 85(1):599-611. PubMed ID: 12829514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence Resonance Energy Transfer Microscopy for Measuring Chromatin Complex Structure and Dynamics.
    Cherubini A; Zippo A
    Methods Mol Biol; 2016; 1480():143-52. PubMed ID: 27659982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission.
    van Rheenen J; Langeslag M; Jalink K
    Biophys J; 2004 Apr; 86(4):2517-29. PubMed ID: 15041688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.