These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 27023767)

  • 1. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
    Staveness D; Bosque I; Stephenson CR
    Acc Chem Res; 2016 Oct; 49(10):2295-2306. PubMed ID: 27529484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions.
    Majek M; Jacobi von Wangelin A
    Acc Chem Res; 2016 Oct; 49(10):2316-2327. PubMed ID: 27669097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Evidence for Excited Ligand Field State-based Oxidative Photoredox Chemistry of a Cobalt(III) Polypyridyl Photosensitizer.
    Alowakennu MM; Ghosh A; McCusker JK
    J Am Chem Soc; 2023 Sep; 145(38):20786-20791. PubMed ID: 37703518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis.
    Beatty JW; Stephenson CR
    Acc Chem Res; 2015 May; 48(5):1474-84. PubMed ID: 25951291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron Density Difference Analysis on the Oxidative and Reductive Quenching Cycles of Classical Iridium and Ruthenium Photoredox Catalysts.
    Medina E; Pinter B
    J Phys Chem A; 2020 May; 124(21):4223-4234. PubMed ID: 32364751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer.
    Lin A; Lee S; Knowles RR
    Acc Chem Res; 2024 Jul; 57(13):1827-1838. PubMed ID: 38905487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Observation of a Photoredox Reaction Mechanism: Photoinitiation in Organocatalyzed Atom-Transfer Radical Polymerization.
    Koyama D; Dale HJA; Orr-Ewing AJ
    J Am Chem Soc; 2018 Jan; 140(4):1285-1293. PubMed ID: 29300460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insights and kinetic analysis for the oxidative hydroxylation of arylboronic acids by visible light photoredox catalysis: a metal-free alternative.
    Pitre SP; McTiernan CD; Ismaili H; Scaiano JC
    J Am Chem Soc; 2013 Sep; 135(36):13286-9. PubMed ID: 23952147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine Design of Photoredox Systems for Catalytic Fluoromethylation of Carbon-Carbon Multiple Bonds.
    Koike T; Akita M
    Acc Chem Res; 2016 Sep; 49(9):1937-45. PubMed ID: 27564676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lanthanide Photocatalysis.
    Qiao Y; Schelter EJ
    Acc Chem Res; 2018 Nov; 51(11):2926-2936. PubMed ID: 30335356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accessing Photoredox Transformations with an Iron(III) Photosensitizer and Green Light.
    Aydogan A; Bangle RE; Cadranel A; Turlington MD; Conroy DT; Cauët E; Singleton ML; Meyer GJ; Sampaio RN; Elias B; Troian-Gautier L
    J Am Chem Soc; 2021 Sep; 143(38):15661-15673. PubMed ID: 34529421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Zirconium Photosensitizer with a Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer.
    Zhang Y; Lee TS; Petersen JL; Milsmann C
    J Am Chem Soc; 2018 May; 140(18):5934-5947. PubMed ID: 29671586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric photoredox transition-metal catalysis activated by visible light.
    Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E
    Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible-Light Actinometry and Intermittent Illumination as Convenient Tools to Study Ru(bpy)3Cl2 Mediated Photoredox Transformations.
    Pitre SP; McTiernan CD; Vine W; DiPucchio R; Grenier M; Scaiano JC
    Sci Rep; 2015 Nov; 5():16397. PubMed ID: 26578341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Resolved Spectroscopic Observation and Characterization of Water-Assisted Photoredox Reactions of Selected Aromatic Carbonyl Compounds.
    Ma J; Zhang X; Phillips DL
    Acc Chem Res; 2019 Mar; 52(3):726-737. PubMed ID: 30742408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.