BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 27023816)

  • 1. Degradation of artificial sweeteners via direct and indirect photochemical reactions.
    Perkola N; Vaalgamaa S; Jernberg J; Vähätalo AV
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13288-97. PubMed ID: 27023816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the environmental impact of artificial sweeteners: a study of their distributions, photodegradation and toxicities.
    Sang Z; Jiang Y; Tsoi YK; Leung KS
    Water Res; 2014 Apr; 52():260-74. PubMed ID: 24289948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of artificial sweeteners in wastewater treatment plants in New York State, U.S.A.
    Subedi B; Kannan K
    Environ Sci Technol; 2014 Dec; 48(23):13668-74. PubMed ID: 25365516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of the artificial sweetener acesulfame by UV light.
    Scheurer M; Schmutz B; Happel O; Brauch HJ; Wülser R; Storck FR
    Sci Total Environ; 2014 May; 481():425-32. PubMed ID: 24631604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic transformation of acesulfame: Transformation products identification and embryotoxicity study.
    Li AJ; Schmitz OJ; Stephan S; Lenzen C; Yue PY; Li K; Li H; Leung KS
    Water Res; 2016 Feb; 89():68-75. PubMed ID: 26630044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of acesulfame in water under natural sunlight: joint effect of photolysis and biodegradation.
    Gan Z; Sun H; Wang R; Hu H; Zhang P; Ren X
    Water Res; 2014 Nov; 64():113-122. PubMed ID: 25046375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT).
    Scheurer M; Brauch HJ; Lange FT
    Anal Bioanal Chem; 2009 Jul; 394(6):1585-94. PubMed ID: 19533103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption and biodegradation of artificial sweeteners in activated sludge processes.
    Tran NH; Gan J; Nguyen VT; Chen H; You L; Duarah A; Zhang L; Gin KY
    Bioresour Technol; 2015 Dec; 197():329-38. PubMed ID: 26342347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical reactivity of perfluorooctanoic acid (PFOA) in conditions representing surface water.
    Vaalgamaa S; Vähätalo AV; Perkola N; Huhtala S
    Sci Total Environ; 2011 Jul; 409(16):3043-8. PubMed ID: 21592543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution properties and sweetness response of selected bulk and intense sweeteners.
    Parke SA; Birch GG
    J Agric Food Chem; 1999 Apr; 47(4):1378-84. PubMed ID: 10563984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-engineering an artificial sweetener: transforming sucralose residuals in water via advanced oxidation.
    Keen OS; Linden KG
    Environ Sci Technol; 2013 Jul; 47(13):6799-805. PubMed ID: 23410009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of seven artificial sweeteners in the aquatic environment and precipitation of Tianjin, China.
    Gan Z; Sun H; Feng B; Wang R; Zhang Y
    Water Res; 2013 Sep; 47(14):4928-37. PubMed ID: 23866151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective continuous monitoring and analysis of mixtures of acesulfame-K, cyclamate, and saccharin in artificial sweetener tablets, diet soft drinks, yogurts, and wines using filter-supported bilayer lipid membranes.
    Nikolelis DP; Pantoulias S
    Anal Chem; 2001 Dec; 73(24):5945-52. PubMed ID: 11791564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial sweeteners in a large Canadian river reflect human consumption in the watershed.
    Spoelstra J; Schiff SL; Brown SJ
    PLoS One; 2013; 8(12):e82706. PubMed ID: 24349342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharin and other artificial sweeteners in soils: estimated inputs from agriculture and households, degradation, and leaching to groundwater.
    Buerge IJ; Keller M; Buser HR; Müller MD; Poiger T
    Environ Sci Technol; 2011 Jan; 45(2):615-21. PubMed ID: 21142066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of four artificial sweeteners in Finnish surface waters with isotope-dilution mass spectrometry.
    Perkola N; Sainio P
    Environ Pollut; 2014 Jan; 184():391-6. PubMed ID: 24100049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advantame sweetener preference in C57BL/6J mice and Sprague-Dawley rats.
    Sclafani A; Ackroff K
    Chem Senses; 2015 Mar; 40(3):181-6. PubMed ID: 25560795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry determination of artificial sweeteners sucralose and acesulfame in well water.
    Wu M; Qian Y; Boyd JM; Hrudey SE; Le XC; Li XF
    J Chromatogr A; 2014 Sep; 1359():156-61. PubMed ID: 25085815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater.
    Buerge IJ; Buser HR; Kahle M; Müller MD; Poiger T
    Environ Sci Technol; 2009 Jun; 43(12):4381-5. PubMed ID: 19603650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration and field validation of POCIS passive samplers for tracking artificial sweeteners as indicators of municipal wastewater contamination in surface waters.
    Sultana T; Metcalfe CD
    Environ Monit Assess; 2022 Jul; 194(8):564. PubMed ID: 35788916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.