BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27023911)

  • 1. Disubstituted naphthyl β-D-xylopyranosides: Synthesis, GAG priming, and histone acetyltransferase (HAT) inhibition.
    Thorsheim K; Persson A; Siegbahn A; Tykesson E; Westergren-Thorsson G; Mani K; Ellervik U
    Glycoconj J; 2016 Apr; 33(2):245-57. PubMed ID: 27023911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and biology of oligoethylene glycol linked naphthoxylosides.
    Holmqvist K; Persson A; Johnsson R; Löfgren J; Mani K; Ellervik U
    Bioorg Med Chem; 2013 Jun; 21(11):3310-7. PubMed ID: 23602625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attenuation of tumor growth by formation of antiproliferative glycosaminoglycans correlates with low acetylation of histone H3.
    Nilsson U; Johnsson R; Fransson LA; Ellervik U; Mani K
    Cancer Res; 2010 May; 70(9):3771-9. PubMed ID: 20406966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Xylosides: Probing the Glycosaminoglycan Biosynthetic Machinery for Biomedical Applications.
    Chua JS; Kuberan B
    Acc Chem Res; 2017 Nov; 50(11):2693-2705. PubMed ID: 29058876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of the active site of β4GalT7: modifications of the aglycon of aromatic xylosides.
    Siegbahn A; Thorsheim K; Ståhle J; Manner S; Hamark C; Persson A; Tykesson E; Mani K; Westergren-Thorsson G; Widmalm G; Ellervik U
    Org Biomol Chem; 2015 Mar; 13(11):3351-62. PubMed ID: 25655827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruthenium(II)- and copper(I)-catalyzed synthesis of click-xylosides and assessment of their glycosaminoglycan priming activity.
    Mencio CP; Garud DR; Doi Y; Bi Y; Vankayalapati H; Koketsu M; Kuberan B
    Bioorg Med Chem Lett; 2017 Nov; 27(22):5027-5030. PubMed ID: 29033235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and assessment of glycosaminoglycan priming activity of cluster-xylosides for potential use as proteoglycan mimetics.
    Tran VM; Nguyen TK; Sorna V; Loganathan D; Kuberan B
    ACS Chem Biol; 2013 May; 8(5):949-57. PubMed ID: 23402705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of selective inhibitors of heparan sulfate and chondroitin sulfate proteoglycan biosynthesis.
    Mencio C; Garud DR; Kuberan B; Koketsu M
    Methods Mol Biol; 2015; 1229():69-78. PubMed ID: 25325945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparan sulfate primed on beta-D-xylosides restores binding of basic fibroblast growth factor.
    Miao HQ; Fritz TA; Esko JD; Zimmermann J; Yayon A; Vlodavsky I
    J Cell Biochem; 1995 Feb; 57(2):173-84. PubMed ID: 7759555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor attenuation by 2(6-hydroxynaphthyl)-beta-D-xylopyranoside requires priming of heparan sulfate and nuclear targeting of the products.
    Mani K; Belting M; Ellervik U; Falk N; Svensson G; Sandgren S; Cheng F; Fransson LA
    Glycobiology; 2004 May; 14(5):387-97. PubMed ID: 14718369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-D-xylosides stimulate GAG synthesis in chondrocyte cultures due to elevation of the extracellular GAG domains, accompanied by the depletion of the intra-pericellular GAG pools, with alterations in the GAG profiles.
    Weinstein T; Evron Z; Trebicz-Geffen M; Aviv M; Robinson D; Kollander Y; Nevo Z
    Connect Tissue Res; 2012; 53(2):169-79. PubMed ID: 22149722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alpha- and beta-xylosides alter glycolipid synthesis in human melanoma and Chinese hamster ovary cells.
    Freeze HH; Sampath D; Varki A
    J Biol Chem; 1993 Jan; 268(3):1618-27. PubMed ID: 8420936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and biomedical applications of xylosides.
    Kalita M; Quintero MV; Raman K; Tran VM; Kuberan B
    Methods Mol Biol; 2015; 1229():517-28. PubMed ID: 25325977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual beta-D-xylosides that prime glycosaminoglycans in animal cells.
    Lugemwa FN; Sarkar AK; Esko JD
    J Biol Chem; 1996 Aug; 271(32):19159-65. PubMed ID: 8702593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of histone acetyltransferase by glycosaminoglycans.
    Buczek-Thomas JA; Hsia E; Rich CB; Foster JA; Nugent MA
    J Cell Biochem; 2008 Sep; 105(1):108-20. PubMed ID: 18459114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of novel inhibitors of histone acetyltransferases.
    Eliseeva ED; Valkov V; Jung M; Jung MO
    Mol Cancer Ther; 2007 Sep; 6(9):2391-8. PubMed ID: 17876038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. beta-D-xylosides and their analogues as artificial initiators of glycosaminoglycan chain synthesis. Aglycone-related variation in their effectiveness in vitro and in ovo.
    Sobue M; Habuchi H; Ito K; Yonekura H; Oguri K; Sakurai K; Kamohara S; Ueno Y; Noyori R; Suzuki S
    Biochem J; 1987 Jan; 241(2):591-601. PubMed ID: 3109379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of fluorophore-tagged xylosides that prime glycosaminoglycan chains.
    Tran VM; Kuberan B
    Bioconjug Chem; 2014 Feb; 25(2):262-8. PubMed ID: 24499349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone.
    Chimenti F; Bizzarri B; Maccioni E; Secci D; Bolasco A; Chimenti P; Fioravanti R; Granese A; Carradori S; Tosi F; Ballario P; Vernarecci S; Filetici P
    J Med Chem; 2009 Jan; 52(2):530-6. PubMed ID: 19099397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, conformation and biology of naphthoxylosides.
    Siegbahn A; Aili U; Ochocinska A; Olofsson M; Rönnols J; Mani K; Widmalm G; Ellervik U
    Bioorg Med Chem; 2011 Jul; 19(13):4114-26. PubMed ID: 21622002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.