These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27025155)

  • 1. Ice-shell purification of ice-binding proteins.
    Marshall CJ; Basu K; Davies PL
    Cryobiology; 2016 Jun; 72(3):258-63. PubMed ID: 27025155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of antifreeze protein from wheat bran (Triticum aestivum L.) based on its hydrophilicity and ice-binding capacity.
    Zhang C; Zhang H; Wang L; Zhang J; Yao H
    J Agric Food Chem; 2007 Sep; 55(19):7654-8. PubMed ID: 17715897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and Characterization of Ice-Binding Proteins from Higher Plants.
    Bredow M; Tomalty HE; Graham LA; Gruneberg AK; Middleton AJ; Vanderbeld B; Davies PL; Walker VK
    Methods Mol Biol; 2020; 2156():303-332. PubMed ID: 32607990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Falling water ice affinity purification of ice-binding proteins.
    Adar C; Sirotinskaya V; Bar Dolev M; Friehmann T; Braslavsky I
    Sci Rep; 2018 Jul; 8(1):11046. PubMed ID: 30038212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 9 kDa antifreeze protein from the Antarctic springtail, Gomphiocephalus hodgsoni.
    Hawes TC; Marshall CJ; Wharton DA
    Cryobiology; 2014 Aug; 69(1):181-3. PubMed ID: 25025820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of boiling-soluble antifreeze protein from the legume Ammopiptanthus mongolicus.
    Wang W; Wei L
    Prep Biochem Biotechnol; 2003 Feb; 33(1):67-80. PubMed ID: 12693816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions.
    Doxey AC; Yaish MW; Griffith M; McConkey BJ
    Nat Biotechnol; 2006 Jul; 24(7):852-5. PubMed ID: 16823370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations.
    Nutt DR; Smith JC
    J Am Chem Soc; 2008 Oct; 130(39):13066-73. PubMed ID: 18774821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of ice-binding proteins from higher plants.
    Middleton AJ; Vanderbeld B; Bredow M; Tomalty H; Davies PL; Walker VK
    Methods Mol Biol; 2014; 1166():255-77. PubMed ID: 24852641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin.
    Duboué-Dijon E; Laage D
    J Chem Phys; 2014 Dec; 141(22):22D529. PubMed ID: 25494800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and structure analysis of antifreeze proteins from Ammopiptanthus mongolicus.
    Fei YB; Cao PX; Gao SQ; Wang B; Wei LB; Zhao J; Chen G; Wang BH
    Prep Biochem Biotechnol; 2008; 38(2):172-83. PubMed ID: 18320468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein.
    Kuffel A; Czapiewski D; Zielkiewicz J
    J Chem Phys; 2014 Aug; 141(5):055103. PubMed ID: 25106616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis.
    Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T
    FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL
    Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the activity of a beta-helical antifreeze protein by the engineered addition of coils.
    Marshall CB; Daley ME; Sykes BD; Davies PL
    Biochemistry; 2004 Sep; 43(37):11637-46. PubMed ID: 15362848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1.
    Do H; Kim SJ; Kim HJ; Lee JH
    Acta Crystallogr D Biol Crystallogr; 2014 Apr; 70(Pt 4):1061-73. PubMed ID: 24699650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.