These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 27025260)

  • 1. Real-time-guided bone regeneration around standardized critical size calvarial defects using bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo micro-computed tomographic and histologic experiment in rats.
    Al-Hezaimi K; Ramalingam S; Al-Askar M; ArRejaie AS; Nooh N; Jawad F; Aldahmash A; Atteya M; Wang CY
    Int J Oral Sci; 2016 Mar; 8(1):7-15. PubMed ID: 27025260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: a real-time in vivo micro-computed tomographic experiment in rats.
    Ramalingam S; Al-Rasheed A; ArRejaie A; Nooh N; Al-Kindi M; Al-Hezaimi K
    Odontology; 2016 May; 104(2):199-210. PubMed ID: 26156449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of Mesenchymal Stem Cells as Adjunct to Guided Bone Regeneration in Standardized Calvarial Defects in Rats: An In Vivo Microcomputed Tomographic and Histologic Analysis.
    Al-Ahmari F; Al-Rasheed A; Ramalingam S; Aldahmash A; Nooh N; Wang CY; Al-Hezaimi K
    Int J Periodontics Restorative Dent; 2016; 36 Suppl():s23-37. PubMed ID: 27031632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guided Bone Regeneration in Standardized Calvarial Defects in Rats Using Bio-Oss and β-Tricalcium Phosphate with Adjunct Platelet-Derived Growth Factor Therapy: A Real-Time In Vivo Microcomputed Tomographic, Biomechanical, and Histologic Analysis.
    Al-Askar M; Javed F; Al-Hezaimi K; Al-Hamdan KS; Ramalingam S; Aldahmash A; Nooh N; Al-Rasheed A
    Int J Periodontics Restorative Dent; 2016; 36 Suppl():s61-73. PubMed ID: 27031635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of Mucograft vs Conventional Resorbable Collagen Membranes in Guided Bone Regeneration Around Standardized Calvarial Defects in Rats: An In Vivo Microcomputed Tomographic Analysis.
    Basudan A; Babay N; Ramalingam S; Nooh N; Al-Kindi M; Al-Rasheed A; Al-Hezaimi K
    Int J Periodontics Restorative Dent; 2016; 36 Suppl():s109-21. PubMed ID: 27031625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of Mucograft vs Conventional Resorbable Collagen Membranes in Guided Bone Regeneration Around Standardized Calvarial Defects in Rats: A Histologic and Biomechanical Assessment.
    Ramalingam S; Basudan A; Babay N; Al-Rasheed A; Nooh N; Nagshbandi J; Aldahmash A; Atteya M; Al-Hezaimi K
    Int J Periodontics Restorative Dent; 2016; 36 Suppl():s99-s107. PubMed ID: 27031638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Assessment of Guided Bone Regeneration in Standardized Calvarial Defects in Rats Using Bio-Oss With and Without Collagen Membrane: An In Vivo Microcomputed Tomographic and Histologic Experiment.
    Nooh N; Ramalingam S; Al-Kindi M; Al-Rasheed A; Al-Hamdan KS; Al-Hezaimi K
    Int J Periodontics Restorative Dent; 2016; 36 Suppl():s139-49. PubMed ID: 27031628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration.
    Qi Y; Niu L; Zhao T; Shi Z; Di T; Feng G; Li J; Huang Z
    Stem Cell Res Ther; 2015 Dec; 6():256. PubMed ID: 26689714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Assessment of Guided Bone Regeneration in Standardized Calvarial Defects Using a Combination of Bone Graft and Platelet-Derived Growth Factor With and Without Collagen Membrane: An In Vivo Microcomputed Tomographic and Histologic Experiment in Rats.
    Alrasheed A; Al-Ahmari F; Ramalingam S; Nooh N; Wang CY; Al-Hezaimi K
    Int J Periodontics Restorative Dent; 2016; 36 Suppl():s173-86. PubMed ID: 27031631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guided Bone Regeneration Using Biphasic Calcium Phosphate With Adjunct Recombinant Human Bone Morphogenetic Protein-2 With and Without Collagen Membrane in Standardized Calvarial Defects in Rats: A Histologic and Biomechanical Analysis.
    Al-Qutub MN; Al-Omar NA; Ramalingam S; Javed F; Al-Kindi M; Ar-Rejaie A; Aldahmash A; Nooh NS; Wang HL; Al-Hezaimi K
    Int J Periodontics Restorative Dent; 2016; 36 Suppl():s11-20. PubMed ID: 27031626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guided Bone Regeneration of Femoral Segmental Defects using Equine Bone Graft: An In-Vivo Micro-Computed Tomographic Study in Rats.
    Binsalah MA; Ramalingam S; Alkindi M; Nooh N; Al-Hezaimi K
    J Invest Surg; 2019 Aug; 32(5):456-466. PubMed ID: 29504816
    [No Abstract]   [Full Text] [Related]  

  • 13. Bone Regeneration Using Bone Morphogenetic Protein-2 and Biphasic Calcium Phosphate With and Without Collagen Membrane in Calvarial Standardized Defects: An In Vivo Microcomputed Tomographic Experiment in Rats.
    Al-Omar NA; Al-Qutub MN; Ramalingam S; Al-Kindi M; Nooh N; Ar-Regaie A; Wang HL; Al-Hezaimi K
    Int J Periodontics Restorative Dent; 2016; 36 Suppl():s161-70. PubMed ID: 27031630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel bioresorbable strontium hydroxyapatite membrane for guided bone regeneration.
    Hao J; Acharya A; Chen K; Chou J; Kasugai S; Lang NP
    Clin Oral Implants Res; 2015; 26(1):1-7. PubMed ID: 24191781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Efficacy of Recombinant Platelet-Derived Growth Factor on Beta-Tricalcium Phosphate to Regenerate Femoral Critical Sized Segmental Defects: Longitudinal
    Badwelan M; Alkindi M; Ramalingam S; Nooh N; Al Hezaimi K
    J Invest Surg; 2020 Jun; 33(5):476-488. PubMed ID: 30430878
    [No Abstract]   [Full Text] [Related]  

  • 16. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertical Bone Augmentation Using Bone Marrow-Derived Stem Cells: An In Vivo Study in the Rabbit Calvaria.
    Namli H; Erdogan Ö; Gönlüşen G; Kahraman OE; Aydin HM; Karabag S; Tatli U
    Implant Dent; 2016 Feb; 25(1):54-62. PubMed ID: 26397478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells.
    Deng Y; Zhou H; Gu P; Fan X
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(9):6016-23. PubMed ID: 25168901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal stem cells and endothelial progenitor cells stimulate bone regeneration and mineral density.
    Zigdon-Giladi H; Bick T; Lewinson D; Machtei EE
    J Periodontol; 2014 Jul; 85(7):984-90. PubMed ID: 24147844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.